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Abstract 

In a Bayesian persuasion setting (Kamenica and Gentzkow, 2011), a sender 

persuades a receiver to take an action by designing and committing to disclose 

information about the receiver’s payoff of taking the action. We propose a 

model that incorporates reciprocity into the Bayesian persuasion setting, using 

the approach of Falk and Fischbacher (2006). The introduction of reciprocal 

concerns leads to a number of novel predictions. First, the receiver’s response 

changes continuously in the realized signals. Second, when the prior belief is 

more favorable, the receiver is more difficult to be persuaded, implying that the 

sender’s optimal persuasion strategy involves more informative disclosure. 

These predictions are supported by experimental data. 
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1. Introduction 

It has long been recognized in psychology and marketing that reciprocation can play a key role in 

successful persuasion. In his best-seller “Influence: The Psychology of Persuasion”, Cialdini (2006) 

names reciprocation as the “first universal principle of influence”. The idea is that people are found to 

feel obliged to give back to others the form of a behavior, gift, or service that they have received first. 

While reciprocation and gift exchange in the form of monetary payoff and effort receive a lot of 

attention in the economics literature (e.g., Güth, Schmittberger, and Schwarze, 1982; Fehr, Kirchsteiger, 

and Riedl, 1993; Berg, Dickhaut, McCabe, 1995; Charness, 2004), their roles in the context of 

persuasion have not been explored. In this paper, we propose a model of Bayesian persuasion that 

incorporates players’ reciprocity, and conduct laboratory experiments to test the model’s predictions. 

The starting point of our analysis is the model of Bayesian persuasion by Kamenica and Gentzkow 

(2011). In their setting, a sender tries to persuade a receiver to take a certain action by controlling the 

information structure through which the receiver can learn about the uncertain payoff of taking an 

action. Instead of assuming that the players care only about the monetary payoffs, as in the standard 

Bayesian persuasion setting, we allow the players to have reciprocal preference. In particular, if the 

receiver perceives that the sender has acted kindly, she would derive utility from returning a favor to the 

sender. Conversely, if the receiver perceives that the sender has acted unkindly, she would derive utility 

from punishing the sender. We model the receiver’s kindness perception using the approach of Falk and 

Fischbacher (2006): the perceived kindness depends on the difference in the payoffs between the 

receiver and the sender. A sender who is willing to act in such a way that gives the receiver a high 

payoff relative to her own payoff is perceived to be kind.  

To illustrate the implications of incorporating reciprocity into the Bayesian persuasion, we consider a 

simple persuasion problem. The state of nature is binary, say red or black. The receiver chooses 

between two actions, labelled as R and B, and derives a positive benefit if her action matches the state 

(i.e., R with red and B with black). The sender derives a positive benefit if and only if the receiver 

chooses R, so he would try to persuade the receiver to choose red. He designs the information structure 

through which the receiver can learn about the state. Kamenica and Gentzkow (2011) show that the 

sender’s problem can be formulated as choosing a distribution of posterior beliefs, and can be solved by 

looking for the concave closure of the sender’s payoff function in the realized posterior beliefs. 

Assuming that the receiver is an expected-payoff maximizer, as in Kamenica and Gentzkow (2011), the 

problem we consider has the sender’s payoff being a step function in the realized posterior beliefs: the 

receiver chooses R if and only if the posterior belief that the state being red is no less than 0.5. 
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Consequently, the sender’s optimal information structure assigns a positive probability only to posterior 

beliefs (that the state is red) 0 and 0.5. 

If the receiver has a reciprocal preference, the sender’s problem is less straightforward. If the sender 

offers an uninformative posterior 0.5, the receiver’s expected payoff is minimized. On the other hand, if 

the sender offers informative posteriors close to 0 or 1, the receiver has a higher expected payoff. The 

receiver would naturally consider a sender who offers uninformative posteriors as unkind and a sender 

who offers informative posteriors as kind. Therefore, a receiver with reciprocal prefernce may be 

willing to punish the sender by choosing black following posterior exceeding 0.5 only marginally. 

Moreover, the more the posterior exceeds 0.5, the more willing is such a receiver to choose red to 

reciprocate the sender’s kind behavior, thus implying that the sender’s payoff function in realized 

posteriors can be continuously increasing, instead of being a simple step function. 

Perhaps more interesting, by incorporating reciprocity, the receiver’s responses and hence the sender’s 

optimal information structure may depend on (ex-post) payoff-irrelevant factors. Specifically, consider 

an increase in the common prior belief about the state being red. The sender’s expected payoff goes up 

as it is more likely that the realized posterior is favorable for the state being red. Consequently, for any 

realized posterior, the receiver’s perception of the sender’s kindness goes down, making them less 

willing to be persuaded to choose R. Therefore, the sender’s payoff function in realized posterior shifts 

downwards, and the optimal information structure becomes more revealing. This, in turn, allows the 

receiver to obtain a higher monetary payoff. These findings are in interesting contrast to the standard 

Bayesian persuasion model without reciprocity, which would predict that the receiver’s responses and 

equilibrium expected payoff are invariant to the prior belief. 

We test these predictions by laboratory experiments. To avoid the abstract language (such as 

conditional distribution function, distributions of posterior beliefs, and Bayes-plausibility) used in the 

standard Bayesian persuasion setting, we design a laboratory game that is strategically equivalent and is 

very easy to understand. The design of our experiment is summarized as follows. Players are randomly 

matched into pairs: player A (sender) and player B (receiver). Play A's objective is to persuade player B 

to take the action of guessing red. The game has the following steps. First, Player A is given 100 balls 

in which 100*μ balls are red and 100*(1- μ) balls are black (for some μ between 0 and 1). Player A's 

task is to allocate the 100 balls into 5 urns (some empty urns are allowed). Then, one urn will be 

randomly drawn, with the probability being the number of balls in the urn divided by 100. Next, the 

composition (i.e., number of red balls and number of black balls) of the drawn urn will be announced to 

player B. In the last stage, one ball will be randomly drawn from the urn, and Player B's task is to guess 
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the color of the ball drawn. If her guess is correct, player B will receive 40 Hong Kong dollars, and zero 

otherwise. On the other hand, player A will receive 40 Hong Kong dollars if player B guesses red 

regardless of the actual color of the ball drawn. In sum, the objective of player A is to design an 

allocation of balls into urns with the objective of persuading player B to guess red. In Section 3, we 

explain in greater detail why this ball allocation game is (essentially) strategically equivalent to a 

Bayesian persuasion game in which the prior of the state is μ. 

The equilibrium ball allocation predicted by the standard Bayesian persuasion model is to allocate 

100*μ red balls and 100*μ -1 (or 100*μ) black balls in one urn, and the rest (of black balls) into other 

urns. Since the first urn has about 200* μ balls, there is about 200* μ % chance that it will be drawn. If 

this urn is drawn, player B will guess red. If the other urn is drawn, player B will guess black. 

To test the effect of the prior belief μ on players’ behaviors, we run two treatments with μ=0.3 and 

μ=0.5 respectively. Our main findings are as follows. First, the receiver's response is not a step-

function; rather, her probability of guessing red is strictly increasing around the 50% mark. In fact, 

given the empirical responses of the receivers, the empirically optimal ball allocation differs from the 

theoretical prediction of Bayesian persuasion described above, while it is consistent with our model in 

which reciprocity concern is incorporated. Second, for urns with a fraction of red balls around 50%, the 

receiver’s probability of guessing red is strictly lower when μ=0.5 than when μ=0.3. In response to the 

more demanding receivers, the senders offer urns with more favorable composition when μ=0.5. Our 

results highlight the importance and empirical relevance of incorporating reciprocity in Bayesian 

persuasion. 

The rest of the paper is organized as follows. A literature review is given below. Section 2 presents our 

theoretical model and develops our hypotheses. Section 3 contains a detailed description of our 

experimental design, as well as explaining why the experimental game is strategically equivalent to the 

Bayesian persuasion game. The main experiment results are reported and analyzed in Section 4. Finally, 

Section 5 concludes. 

1.1 Literature Review 

Kamenica and Gentzkow (2011) initiated a large and growing theoretical literature on communication 

game in which the sender can commit to the information acquisition and disclosure policies.  Their 

model has been applied to studying information transmission in a large number of contexts, including 

Internet advertising (Rayo and Segal 2010), organizational communication (Jehiel 2014), financial 

regulation (Goldstein and Leitner 2015), medical testing (Schweizer and Szech 2018), medical research 

design (Kolotilin 2013; Au 2015), government control of the media (Gehlbach and Sonin 2014; 
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Kolotilin et.al. 2017), entertainment (Ely et al. 2015), and reporting of academic performance (Au and 

Kawai 2017a; Wu 2018). 

Experimental studies on Bayesian persuasion are relatively scant. Frechette, Lizzeri, and Perego (2017) 

propose a unified experimental framework to test communications via cheap-talk, disclosure of 

verifiable information, and Bayesian persuasion. Concerning the tests for Bayesian persuasion model, 

the design they adopt is very different from ours. First, while we ask subjects who play the role of the 

sender to choose a distribution over posteriors, they ask subjects to choose a conditional distribution of 

signals. Second, they restrict the message space to three, whereas we give the senders more flexibility 

and allow for up to 5 messages. An advantage of our approach is that the receiver in our game faces a 

very simple decision-problem that does not involve any probability updating: they are given the exact 

posterior. Therefore, mistakes in probability calculation or non-Bayesian updating are immediately 

ruled out as explanations to any behavioral responses by the receiver. Moreover, the flexibility in the 

design of information structure (ball allocation) allows us to test whether the prediction of using only 

two signals holds in the laboratory.  Nguyen (2017) conducts laboratory experiments of Bayesian 

persuasion games but with a much restricted space of feasible information structures. She finds that 

subjects are able to choose the optimal information structure given sufficient experience and feedback.  

Our Bayesian persuasion setting is somewhat similar to an ultimatum game, as the sender has "full 

bargaining power" in the sense that she can choose an information structure that leaves little rent to the 

receiver. Ultimatum games have been first studied experimentally in Güth, Schmittberger, and 

Schwarze (1982), which has triggered a large number of follow-up studies (see Güth and Kocher (2014) 

for a recent survey). A robust finding in these studies is that when the proposer only offers a very small 

amount (say 1% of the pie) for the responder, most responders reciprocate negatively by rejecting the 

offer, even though classical economic theory predicts that the responder should accept (e.g., Kagel, 

Kim, and Moserthat,1996; and Roth, 2005). In a related vein, intentional reciprocation has also been 

documented in studies of gift-exchange games, such as Charness and Haruvy (2002), and Charness and 

Levine (2007). We find that similar forces can be at work in a persuasion setting. Choosing an 

information structure that is too opaque leaves too little rent to the receiver, who may punish the sender 

for being too "stingy" by refusing to be persuaded. On the other hand, offering a transparent disclosure 

benefits the receiver, who is then more likely to reciprocate by acting favorably to the sender.  

Models of reciprocal behaviors have been proposed by Falk and Fischbacher (2006), Rabin (1993), and 

Fehr and Schmidt (1999). Common to these approaches is that people are assumed to be willing to 
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sacrifice their own monetary payoffs for a more desirable payoff allocation (among all players).1  In 

Falk and Fischbacher (2006), players evaluate the kindness of an action by interpersonal payoff 

comparison and reward (punish) a kind (unkind) action. In Rabin (1993), players evaluate kindness by 

comparing the received payoff with an equitable payoff (determined by the average of the highest and 

the lowest possible payoffs).2 In Fehr and Schmidt (1999), players are willing to take costly actions to 

reduce payoff inequality. In this paper, we follow Falk and Fischbacher (2006) in modelling reciprocity, 

and we will discuss implications of using alternative modelling approaches in our setting at the end of 

Section 2.  

2. A Model of Bayesian Persuasion with Reciprocity 

Our theory of reciprocation in persuasion is developed in this section. In Section 2.1, we begin with a 

quick review of the Bayesian persuasion model of Kamenica and Gentzkow (2011). We then specify the 

particular persuasion setting that we study. In Section 2.2, reciprocity is introduced into the model, and 

the reciprocity equilibrium is defined and computed. We conclude this section by developing and 

explicitly stating our hypotheses.  

2.1 Bayesian Persuasion  

We briefly outline the Bayesian persuasion model of Kamenica and Gentzkow (2011). Let's begin with 

the simplest setting of one (male) sender and one (female) receiver. In the model, the objective of the 

sender is to persuade the receiver to take a certain course of action. To this end, the sender can design 

the signal structure through which the receiver can learn about an underlying state of the world affecting 

her payoff of taking the action. The model imposes no constraint on the set of signal structures the 

sender can choose from. A conflict of interest arises if the payoff function of the sender does not 

coincide with that of the receiver. Kamenica and Gentzkow (2011) show that the signal structure design 

problem is equivalent to choosing a distribution of posterior beliefs that respects Bayes rule. 

Formally, denote the state of the world by 𝜔 ∈ Ω and the prior distribution over states by 𝜇 ∈ ∆(Ω). The 

payoffs of the sender and the receiver are respectively denoted by  𝑣(𝛼, 𝜔) and 𝑢(𝛼,𝜔), where α ∈ 𝐴 is 

the action chosen by the receiver. A signal structure on 𝜔 consists of a signal space M and a conditional 

distribution function f ∶ M × Ω → [0, 1]. Kamenica and Gentzkow (2011) show that it is without loss of 

generality to assume the set of available strategies to the sender is the set of Bayes-plausible 

distributions of posterior beliefs, i.e., {μ ∈ ∆(∆(Ω)) ∶  𝐸𝜇[ω] = 𝜇}. 

                                                           
1 See Charness and Rabin (2002) for comparing and testing these theories in a unified framework.   
2 Dufwenberg and Kirchsteiger (1998) extend Rabin’s model to sequential games. 
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We investigate to the following persuasion game. There are two possible states of the world, red and 

black, with some prior distribution. The receiver has two available actions, R and B, and she gets a 

positive payoff (normalized to one throughout this section) if and only if her action matches with the 

state (i.e., choosing R when the state is red, and B when the state is black). The sender, on the other 

hand, gets a positive payoff (again normalized to one) if and only if the receiver chooses R. The 

objective of the sender is thus to maximize the chance that the receiver, after learning some extra 

information on the state of the world, is willing to choose R. In the notations above, Ω = {red, black}, 

and 𝐴 = {𝑅, 𝐵}. As the state is binary, we can represent any belief over the state by the probability that 

the state is red. With this convention, the prior belief 𝜇 is a scalar specifying the prior probability that 

the state is red. Moreover, the sender’s payoff has 𝑣(𝛼,𝜔) =1 if and only if 𝛼 = 𝑅, whereas the 

receiver’s payoff has 𝑢(𝛼,𝜔) = 1 if and only if either 𝛼 = 𝑅 and 𝜔 = 𝑟𝑒𝑑, or 𝛼 = 𝐵 and 𝜔 = 𝑏𝑙𝑎𝑐𝑘. 

If he believes that the receiver is an expected-utility maximizer (as in the standard Bayesian persuasion 

model), then the optimal signal structure consists of only two signal realizations, one that makes the 

receiver indifferent between R and B, another that fully reveals the state is black. In the notations above, 

|M|  =  2. If we denote the two signals by h and l respectively, then the first signal ℎ leads to a posterior 

belief Pr (ω = red|h)  =  0.5 and the second signal 𝑙 gives a posterior Pr (ω = red|l)  =  0. 

The experiment we design fits the setting above. However, instead of framing the problem as one of 

choosing a distribution of posterior beliefs, we ask subjects who play the role of senders to allocate 

colored balls into a number of urns. One of the urns will be drawn randomly, the probability of which 

depends on the total number of balls in the urn. Upon learning the composition of the drawn urn, 

subjects who play the role of receivers then choose between red and black. Finally, one ball is drawn 

from the urn randomly, and the receivers collect a positive payoff if and only if the color of the ball 

coincides with their choice. We will explain in greater details why the game of Bayesian persuasion and 

the game of ball allocation are strategically equivalent in Section 3. We conclude this subsection with 

the following lemma that states the predictions of the standard Bayesian persuasion model for the game 

we consider. 

Lemma 1     The unique perfect Bayesian equilibrium is as follows. The receiver chooses R if and 

only if the posterior belief induced the signal realization is no less than 0.5. If 𝜇 <
1

2
, the sender chooses 

a signal structure that induces only two posteriors 0 and 0.5. If  𝜇 =
1

2
 , the sender chooses a signal 

structure that induces only a posterior 0.5. 
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For later reference, note that in the unique perfect Bayesian equilibrium, the receiver’s response, given 

by a simple step function in posterior beliefs, is independent of the prior 𝜇. Moreover, provided that 𝜇 ≤

1

2
, only posteriors 0 and 0.5 would be induced by the sender. As shown below, the predictions could be 

very different once reciprocal preference is introduced. 

2.2 Persuasion with Reciprocity 

In this subsection, we introduce reciprocity into the Bayesian persuasion game we studied following the 

approach of Falk and Fischbacher (2006). Specifically, on top of the standard monetary payoffs, a 

player's utility function consists of terms that capture the kindness of the other player, as well as an 

appropriate reciprocation to the received treatment. Let 𝜋𝑖(𝜎𝑆, 𝜎𝑅) be the monetary payoff of player 𝑖 ∈

{𝑆, 𝑅} if the sender and the receiver play strategy 𝜎𝑆 and 𝜎𝑅 respectively. Consider first the receiver's 

utility function. Let 𝑘𝑖(𝜎′𝑅 , 𝜎′′𝑅) be the sender's kindness perceived by the receiver, where 𝜎′𝑅 is the 

receiver's first-order belief concerning the sender's strategy, and 𝜎′′𝑅 is the receiver's second-order 

belief concerning the sender's belief on the receiver's strategy. Falk and Fischbacher (2006) specify that 

𝑘𝑆(𝜎
′
𝑅 , 𝜎

′′
𝑅) =  𝜋𝑅(𝜎

′
𝑅 , 𝜎

′′
𝑅) − 𝜋𝑆(𝜎

′
𝑅 , 𝜎

′′
𝑅). 

That is, the higher the payoff that the sender's strategy is perceived to bring to the receiver relative to 

the sender's own payoff, the kinder the receiver thinks the sender is. Next, the reciprocation term of the 

receiver is defined as 

𝜌𝑅(𝜎𝑅, 𝜎
′
𝑅 , 𝜎

′′
𝑅) = 𝜋𝑆(𝜎

′
𝑅 , 𝜎𝑅) − 𝜋𝑆(𝜎

′
𝑅 , 𝜎

′′
𝑅). 

The reciprocation term above can be interpreted as the alteration in the sender's payoff brought about by 

the receiver changing his/her strategy from 𝜎′′𝑅 to 𝜎𝑅. The receiver's reciprocity utility is defined as the 

product of the kindness term 𝑘𝑆(𝜎
′
𝑅 , 𝜎

′′
𝑅) and the reciprocation term 𝜌𝑅(𝜎𝑅 , 𝜎

′
𝑅 , 𝜎

′′
𝑅). The idea is that 

if the receiver perceives the sender to be kind, then he/she derives a positive utility by returning the 

sender a favor. Conversely, if the receiver perceives the sender to be unkind, then he/she derives a 

positive utility by taking action to lower the sender's monetary payoff. The receiver's overall utility is 

defined as 

𝑈𝑅(𝜎𝑆, 𝜎𝑅; 𝜎′𝑅 , 𝜎′′𝑅) ≡ 𝜋𝑅(𝜎𝑆, 𝜎𝑅) + 𝜆𝑅𝑘𝑆(𝜎
′
𝑅 , 𝜎

′′
𝑅)𝜌𝑅(𝜎𝑅, 𝜎

′
𝑅 , 𝜎

′′
𝑅), 

where 𝜆𝑅 ≤ 1 is the receiver's reciprocation parameter. It is a positive constant that measures the 

strength of the reciprocal preference. 



8 
 

While we can formulate the sender's reciprocal utility in a similar manner, we proceed our analysis by 

assuming that the sender does not care about reciprocation. In other words, we assume that the sender's 

reciprocation parameter is zero and she maximizes her monetary payoff only. This simplification is 

without loss of generality if the sender's reciprocation parameter is not too large. As shown in Falk and 

Fischbacher (2006), the proposer's reciprocation incentives matter in an ultimatum game if and only if 

the proposer's reciprocation parameter is significantly larger than that of the responder. As the sender in 

our Bayesian persuasion game plays a role similar to a proposer in an ultimatum game, a similar result 

holds in our setting. 

As the players' utilities are assumed to depend on their beliefs, the reciprocity game proposed by Falk 

and Fischbacher (2006) belongs to the class of psychological games pioneered by Geanakoplos, Pearce, 

and Stacchetti (1989). The equilibrium notion we adopt is standard in psychological games. First, given 

beliefs, each player maximizes their expected utility. Second, the beliefs match the actual behaviors. 

    We specify the kindness terms in our Bayesian persuasion game below. Denote by μ the initial 

fraction of red balls. For simplicity, we make the following restrictions on players' strategies. Each 

sender provides at most two urns. Feasibility implies that one of which has a fraction of red balls no 

higher than μ, whereas the other has a fraction of red balls no lower than μ.3 Under this restriction of 

strategy space, a generic strategy of the sender is a pair of fractions (𝑝, 𝑞), with 𝑝 ≥ 𝜇 ≥ 𝑞, describing 

the respective proportion of red balls in the two urns designed. A generic strategy of the receiver 

specifies the probability 𝜎𝑅(𝑝) of guessing red after an urn with a fraction p of red balls is drawn. 

We assume that given a certain equilibrium sender strategy (𝑝∗, 𝑞∗), the receiver evaluates the sender's 

kindness only by the fraction of red balls in the drawn urn. Specifically, suppose the fraction of red balls 

is 𝑝 ≥ 𝜇 in the drawn urn, and let 𝜎′′𝑅 be the receiver's second-order belief about his own strategy. 

Then the sender's kindness perceived by the receiver is given by 

𝑘𝑆(𝑝, 𝜎
′′
𝑅; (𝑝

∗, 𝑞∗))

=  

[
 
 
 
𝑝 − 𝜇

𝑝 − 𝑞∗
(𝑞∗𝜎′′𝑅(𝑞

∗) + (1 − 𝑞∗)(1 − 𝜎′′𝑅(𝑞
∗)))

+
𝜇 − 𝑞∗

𝑝 − 𝑞∗
(𝑝𝜎′′𝑅(𝑝) + (1 − 𝑝)(1 − 𝜎′′𝑅(𝑝))) ]

 
 
 

− [
𝑝 − 𝜇

𝑝 − 𝑞∗
𝜎′′𝑅(𝑞

∗) +
𝜇 − 𝑞∗

𝑝 − 𝑞∗
𝜎′′𝑅(𝑝)]. 

                                                           
3 In our experiments, it occurred more than 65% of the time that no more than two effective urns (in term of the 

fraction of red ball in the urn) were chosen by senders. 
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Note that in the specification above, even though the receiver does not observe the composition of the 

undrawn urn, he assumes that its fraction of red balls stays at the equilibrium value of 𝑞∗. To understand 

the expression above, note that if the sender's strategy is (𝑝, 𝑞∗), then with probability 
𝑝−𝜇

𝑝−𝑞∗
, the urn with 

fraction 𝑞∗ ≤ 𝜇 of red balls is drawn. In this case, the payoffs of the receiver and the sender are 

𝑞∗𝜎′′𝑅(𝑞
∗) + (1 − 𝑞∗)(1 − 𝜎′′𝑅(𝑞

∗)) and 𝜎′′𝑅(𝑞
∗) respectively. With complementary probability 

𝜇−𝑞∗

𝑝−𝑞∗
, the urn with a fraction 𝑝 ≥ 𝜇 of red balls is drawn. In this case, the expected payoffs of the 

receiver and the sender are (𝑝𝜎′′𝑅(𝑝) + (1 − 𝑝)(1 − 𝜎′′𝑅(𝑝))) and 𝜎′′𝑅(𝑝) respectively. 

Similarly, if the drawn urn has a fraction 𝑞 ≤ 𝜇 of red balls, the sender's perceived kindness is 

𝑘𝑆(𝑞, 𝜎
′′
𝑅; (𝑝

∗, 𝑞∗))

=  

[
 
 
 
𝑝∗ − 𝜇

𝑝∗ − 𝑞
(𝑞𝜎′′𝑅(𝑞) + (1 − 𝑞)(1 − 𝜎

′′
𝑅(𝑞)))

+
𝜇 − 𝑞

𝑝 − 𝑞
(𝑝∗𝜎′′𝑅(𝑝

∗) + (1 − 𝑝∗)(1 − 𝜎′′𝑅(𝑝
∗)))

]
 
 
 

− [
𝑝∗ − 𝜇

𝑝∗ − 𝑞
𝜎′′𝑅(𝑞) +

𝜇 − 𝑞

𝑝∗ − 𝑞
𝜎′′𝑅(𝑝

∗)]. 

In sum, a pair of strategy ((𝑝∗, 𝑞∗), 𝜎𝑅(∙)) constitutes a reciprocity equilibrium if and only if  

(i) the sender's strategy maximizes her utility given belief 𝜎𝑅(∙), i.e., 

(𝑝∗, 𝑞∗) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥{(𝑝′,𝑞′):𝑝′≥𝜇≥𝑞′}
𝑝′−𝜇

𝑝′−𝑞′
𝜎𝑅(𝑞

′) +
𝜇−𝑞′

𝑝′−𝑞′
𝜎𝑅(𝑝

′); and 

(ii.a) if an urn with a fraction 𝑝 ≥ 𝜇 of red balls realized, the receiver maximizes her utility given 

beliefs (𝑞∗, 𝜎𝑅(⋅)), i.e., 

 𝜎𝑅(𝑝) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝜎∈[0,1]𝑝𝜎 + (1 − 𝑝)(1 − 𝜎) + 𝜆𝑅𝑘𝑆(𝑝, 𝜎𝑅; (𝑝
∗, 𝑞∗))[𝜎 − 𝜎𝑅(𝑝)]; and 

 (ii.b)  if an urn with a fraction 𝑞 ≤ 𝜇 of red balls realized, the receiver maximizes her utility given 

beliefs (𝑝∗, 𝜎𝑅(⋅)),, i.e., 

 𝜎𝑅(𝑞) ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝜎∈[0,1]𝑞𝜎 + (1 − 𝑞)(1 − 𝜎) + 𝜆𝑅𝑘𝑆(𝑞, 𝜎𝑅; (𝑝
∗, 𝑞∗))[𝜎 − 𝜎𝑅(𝑞)]. 

The proposition below states the reciprocity equilibrium. 
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Proposition 1 Let 𝜇 ≤
1

2
. The reciprocity equilibrium (in which the sender offers two urns) is unique. 

The sender chooses (𝑝∗, 0) where 𝑝∗ =
1

4
[(1 − 𝜆𝑅(1 + 𝜇)) + √((1 − 𝜆𝑅(1 + 𝜇))

2 + 16𝜇𝜆𝑅]. Upon 

observing an urn with a fraction p of red balls, the receiver's probability of guessing red is given by 

𝜎𝑅(𝑝) =

{
 
 
 

 
 
 
max{0,

(2p − 1)(𝑝∗ − p)
𝜆𝑅

+ (1 − μ)(𝑝∗ − p) − 2(μ − p)(1 − 𝑝∗)

2(𝑝∗ − μ)(1 − p)
}   𝑖𝑓 𝑝 < 𝜇

min{

(2p − 1)p
𝜆𝑅

+ (1 − μ)p

2μ(1 − p)
, 1}   𝑖𝑓 𝑝 ≥ 𝜇

. 

The proof of the proposition can be found in the appendix. The proposition implies that the receiver's 

probability of guessing red 𝜎𝑅(𝑝) is not a step-function in the fraction p of red balls of the drawn urn, as 

predicted in the standard Bayesian persuasion model in which the receiver is assumed to maximize 

expected payoff (recall Lemma 1). If the receiver's reciprocity parameter 𝜆𝑅 is positive, 𝜎𝑅(𝑝) increases 

continuously over an interval of 𝑝. Moreover, if 𝜆𝑅 is sufficiently large, 𝜎𝑅(𝑝)  can be positive even if 

the fraction 𝑝 of red balls is less than ½, and it can be less than one even if the fraction 𝑝 of red balls 

exceeds ½. Figure 1 below illustrates the receiver’s equilibrium strategy 𝜎𝑅(𝑝) for the case 𝜆𝑅 = 0.6.  

 

Figure 1: Receiver’s equilibrium responses (Black curve: 𝜇 = 0.3; red curve: 𝜇 = 0.5) 

The discussion above leads to our first hypothesis. 
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Hypothesis 1  The probability that the receiver guesses red increases continuously in the fraction of 

red balls in the drawn urn around the 50% mark. 

Proposition 1 implies that an increase in 𝜇 would shift 𝜎𝑅(𝑝)  downwards. Moreover, as 𝜇 increases, the 

sender's equilibrium strategy (𝑝∗, 0) would have 𝑝∗ going up. In other words, the sender provides a 

more "generous" ball allocation, with the urn that contains a positive number of red balls having a 

higher proportion of red balls. This corresponds to a more transparent information disclosure. 

Corollary 1 Suppose 𝜇 < 𝜇′ ≤
1

2
. The receiver's probability of guessing red 𝜎𝑅(𝑝)  is weakly lower 

when the initial fraction of red balls is 𝜇′ than when the fraction is 𝜇. Moreover, in the sender's strategy 

(𝑝∗, 0), 𝑝∗ goes up with initial fraction of red balls, i.e., the urn that contains a positive number of red 

balls has a higher proportion of red balls when the initial fraction is 𝜇′ than when it is 𝜇. 

In Figure 1, it is apparent that 𝜎𝑅(𝑝) is weakly lower for the case 𝜇 = 0.5 than the case 𝜇 = 0.3, and 

strictly so when 𝑝 is between 0.3 and 0.55. Moreover, when 𝜇 = 0.3, the sender’s optimal strategy has a 

𝑝∗ close to 0.5; and when 𝜇 = 0.5, the sender’s optimal strategy has a 𝑝∗ close to 0.6. Figure 2 plots the 

sender’s equilibrium choice of 𝑝∗ against 𝜆𝑅. It is clear that the sender’s choice of 𝑝∗ is higher for every 

level of 𝜆𝑅. 

 

  

Figure 2: Sender’s Equilibrium Choice of 𝑝∗ against 𝜆𝑅 (Black curve: 𝜇 = 0.3; red curve: 𝜇 = 0.5) 

The intuition of Corollary 1 is analogous to that of an ultimatum game. The receiver demands a "fair 

share" of the surplus and is therefore willing to sacrifice his own monetary payoffs to punish the sender 
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if she perceives the sender to be unkind. In an ultimatum game, the punishment takes the form of 

rejecting the proposer's offer (thus giving zero payoff to both players), whereas in the Bayesian 

persuasion game here, the punishment takes the form of guessing black (thus lowering his own expected 

payoff in order to make the sender getting a zero payoff). When the initial fraction of red balls is higher, 

the sender has a higher expected payoff holding fixed the receiver's behavior. As a result, for each urn 

drawn, the receiver would perceive the sender to be less kind than when the initial fraction of red balls 

is lower, and consequently, they lower the probability of guessing red. This leads to our second 

hypothesis. 

Hypothesis 2  An increase in the initial fraction of red balls weakly lowers the probability that the 

receiver guesses red for any urn composition. 

According to the second part of Corollary 1, as an increase in the initial number of red balls makes the 

receiver more demanding, the sender finds it optimal to design urns with more extreme composition, as 

a higher fraction of red balls is needed to induce a high probability that the receiver guesses red. This is 

our third hypothesis. 

Hypothesis 3  When the initial number of red balls increases, the sender makes the fraction of red 

balls in the urns more extreme (i.e., closer to 0 and 1). 

Recall Lemma 1 states that in the absence of any reciprocal preference, the prior belief, which 

corresponds to the initial fraction of red balls here, affects neither the receiver's response function, nor 

the "good signal" (which corresponds to the fraction of red balls in the urn that contains a positive 

number of red balls). In other words, the standard Bayesian persuasion model without reciprocation 

incentives, would predict, in sharp contrast to Hypotheses 2 and 3 above, that neither the receiver’s 

strategy 𝜎𝑅(𝑝) nor the sender’s strategy (𝑝∗, 0) would be affected by the prior belief. 

Our last hypothesis concerns the expected payoff of the players. While it is intuitive that the sender 

would benefit from an increase in the initial fraction of red balls (a more favourable common prior 

belief), a priori, it is less clear whether the receiver would benefit. In fact, in a Bayesian persuasion 

model without reciprocity, an increase in the prior could strictly harm the receiver. To see this, note that 

the receiver gets the positive payoff for certain if the drawn urn has 0% red ball, and gets the positive 

payoff with probability 50% if the drawn urn has 50% red ball. When the initial fraction of red balls is 

𝜇 <
1

2
, the receiver’s ex-ante probability of getting a positive payoff is  

𝜇

0.5
× 0.5 + (1 −

𝜇

0.5
) × 1 = 1 −

𝜇, which is strictly decreasing in 𝜇. The following corollary states that, however, when the reciprocation 

parameter is sufficiently large, the receiver’s expected payoff can become increasing in 𝜇. 
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Corollary 2 Suppose 𝜇 < 𝜇′ ≤
1

2
.. The sender’s expected monetary payoff is higher if the initial 

fraction of red balls is 𝜇′ than when it is 𝜇. The same is true for the receiver’s expected monetary payoff 

if the reciprocation parameter 𝜆𝑅 is sufficiently large. 

The proof can be found in the appendix. The corollary leads to the following hypothesis on the expected 

monetary payoffs of the players.   

Hypothesis 4 When the initial number of red balls increases, both the expected monetary payoffs of 

both sender and the receiver increase. 

We conclude this section by briefly discussing alternative common approaches of modelling reciprocity 

in the literature. A notable feature of our model is that the receiver evaluates the sender’s kindness by 

comparing the sender’s expected payoff with hers. In Rabin (1993), kindness is evaluated by comparing 

the actual payoff with an equitable payoff (that is determined by the average of the highest and lowest 

possible payoffs). In our setting, an increase in the initial fraction of red balls from 𝜇 to some 𝜇′ ≤
1

2
, 

holding other things constant, would actually decrease the receiver’s lowest possible payoff (without 

changing the highest possible payoff), so the equitable payoff to the receiver goes down. Any strategy 

of the sender would then be perceived as more kind, and the receiver would be more willing to guess 

red. Consequently, the predictions in Hypotheses 2 to 4 would be reversed under Rabin (1993)’s 

formulation. Fehr and Schmidt (1999) take a consequentialist approach and assume that players take 

actions to reduce payoff inequality between the players. As the sender’s intention does not matter in 

determining payoff inequality, only ex-post payoff-relevant information enters into players’ utility 

function. Therefore, in our setting, the approach of Fehr and Schmidt (1999) would predict that the 

initial fraction of red balls has no effect on the receiver’s responses and the sender’s strategy.4    

3. Experimental Design 

In this section, we first describe our experiment procedures in details in Section 3.1. We then explain 

why our design is essentially strategically equivalent to a Bayesian persuasion setting in Section 3.2. 

3.1 Experiment Procedures 
In our experiment, there were 10 rounds of decision making. In each round, subjects were randomly 

matched into pairs. In each matched pair, one subject was assigned to the role of Player A; and the other 

                                                           
4 More precisely, the percentages of red balls in the constructed urns would remain unchanged, though the 

numbers of balls in the constructed urns would differ. 
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the role of Player B. Each subject's role remained fixed throughout the experiment. Subjects’ decisions 

were anonymous. The game had two stages. 

Stage 1 

In each round, player A were asked to allocate (all of) 100 colored balls into 5 urns. There are two 

treatments. In the 30-red-70-black treatment, there were 30 red balls and 70 black balls. In 50-red-50-

black treatment, there were 50 red balls and 50 black balls. Player A was asked to fill in the following 

table: 

 

     

 

 

Player A had to determine the number of red balls and black balls in each of the urns. An empty urn is 

allowed. All 100 balls must be allocated to one of the urns; in other words, the sum of balls in the urns 

must be 100.  

Then, one urn would be randomly drawn. The total number of balls in each urn would determine the 

probability that the urn will be drawn. For example, if urn 1 contained 80 balls, then this urn would be 

drawn will probability 0.8. Player A could check the total number of balls allocated by clicking the icon 

"Check" in the program before submitting his/her decision.  

Stage 2 

After an urn was drawn, Player B received a message on the screen specifying the number of red balls 

and number of black balls in the urn. For example: 

The urn contains 20 red balls and 20 black balls. 

Then, a ball would be randomly drawn from the urn, and player B was asked to guess whether the ball 

drawn is red or black.  

Payoff    

Player A received 40 Hong Kong dollars if player B guessed that the ball was red, regardless of the 

actual color of the ball drawn. Player A received 0 dollars if player B guessed that the ball was black, 

Urn 1 2 3 4 5 

Red       

Black      
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regardless of the actual color of the ball drawn. In the end of the experiment, one round would be 

randomly drawn for payment. 

If player B's guess coincided with the ball drawn, he/she received 40 dollars. If the guess was incorrect, 

his/her payoff was zero.  

Information Feedback 

At the end of each round, subjects were informed about (i) the urn drawn, (ii) the guess made by Player 

B, (iii) the color of the ball drawn, and (iv) earning.  

In total, 162 subjects participated in 8 sessions of the experiment (4 sessions for each treatment). Each 

subject participated in only one session. The subjects were undergraduate students in a major university 

in Hong Kong, and they were randomly recruited using an electronic recruitment system. The 

experiment was conducted using the program z-tree (Fischbacher, 2007) and took place in a laboratory 

where subjects were randomly seated in partitioned cubicles. Before the beginning of the 10 decision-

making rounds, subjects were given one practice round. Out of the 10 rounds, one round was randomly 

drawn for payment. In the end of the experiments, subjects completed a questionnaire in which they 

were asked the reasons behind their choices in the experiment. Subjects received a show-up fee of 40 

Hong Kong dollars, in addition to earnings from the randomly-drawn round. 

3.2 Strategic Equivalence between Our Experiment and Bayesian Persuasion 

While subjects who play the role of Player A in our experiment chooses a ball allocation among urns, 

their decision problem is strategically equivalent to choosing a distribution of posterior. There is a one-

to-one mapping between the ball allocation problem and that of signal structure design. First, the colors 

of the balls correspond to the states, and the initial proportion of red balls corresponds to the prior 

probability distribution (0.3 in the 30-red-70-black treatment and 0.5 in the 50-red-50-black treatment). 

Second, each urn corresponds to one possible signal realization. Here, an urn with more assigned balls 

corresponds to a signal with a higher likelihood of materialization. Moreover, an urn with a larger 

proportion of red balls corresponds to a signal that is more indicative the state being red. It is 

straightforward to show that if there are infinitely many available urns, and if the balls are infinitely 

divisible, the ball-allocation problem is mathematically equivalent to the signal-structure design 

problem. 

To see this formally, given a prior distribution 𝜇0 and a signal structure f(s|ω), the posterior probability 

that the state is red conditional on signal realization 𝑠0is 
𝜇0(𝑟𝑒𝑑)𝑓(𝑠0|𝑟𝑒𝑑)

𝜇0(𝑟𝑒𝑑)𝑓(𝑠0|𝑟𝑒𝑑)+𝜇0(𝑏𝑙𝑎𝑐𝑘)𝑓(𝑠0|𝑏𝑙𝑎𝑐𝑘)
 , and the 

probability that signal realization 𝑠0 materializes is 𝜇0(𝑟𝑒𝑑)𝑓(𝑠0|𝑟𝑒𝑑) + 𝜇0(𝑏𝑙𝑎𝑐𝑘)𝑓(𝑠0|𝑏𝑙𝑎𝑐𝑘). If we 
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interpret the prior distribution 𝜇0 as a collection of probability masses, with 𝜇0(𝑟𝑒𝑑) units of red mass 

and 𝜇0(𝑏𝑙𝑎𝑐𝑘) units of black mass, then the signal realization 𝑠0 can be interpreted as an "urn" that 

contains a subset of these probability masses; specifically it contains a probability mass of  

𝜇0(𝑟𝑒𝑑)𝑓(𝑠0|𝑟𝑒𝑑) + 𝜇0(𝑏𝑙𝑎𝑐𝑘)𝑓(𝑠0|𝑏𝑙𝑎𝑐𝑘) units, out of which  𝜇0(𝑟𝑒𝑑)𝑓(𝑠0|𝑟𝑒𝑑) + 𝜇0 units are red 

mass. Upon observing signal 𝑠0, the receiver’s posterior belief about state being red is 

𝜇0(𝑟𝑒𝑑)𝑓(𝑠0|𝑟𝑒𝑑)

𝜇0(𝑟𝑒𝑑)𝑓(𝑠0|𝑟𝑒𝑑)+𝜇0(𝑏𝑙𝑎𝑐𝑘)𝑓(𝑠0|𝑏𝑙𝑎𝑐𝑘)
 ; this probability is identical to that of drawing a unit of red mass 

out of  𝜇0(𝑟𝑒𝑑)𝑓(𝑠0|𝑟𝑒𝑑) + 𝜇0(𝑏𝑙𝑎𝑐𝑘)𝑓(𝑠0|𝑏𝑙𝑎𝑐𝑘) units of probability masses. 

For practical implementation, we restrict the maximum number of urns to 5 and provide subjects with 

100 indivisible balls. It is worth noting that even with these restrictions, the optimal ball allocation (or 

equivalently, the optimal signal structure) in the absence of the finiteness constraint can still be 

implemented in our setting. Specifically, in the 30-red-70-black treatment, an optimal allocation 

involves putting all balls into two urns: one urn consists of 30 red balls and 30 black balls; whereas the 

other urn consists of 40 black balls. In the 50-red-50-black treatment, an optimal allocation involves 

putting all balls in a single urn. 

4. Experimental Results 

We report our experimental results in this section. Section 4.1 discusses findings about the responses of 

the receiver (Player B), and Section 4.2 discusses the ball-allocation choices of the senders (Player A).  

4.1 Receivers' Responses 

Figure 3 reports Player Bs’ average frequency of guessing red when presented with urns of different 

compositions for both the 30-red-70black treatment and the 50-red-50-black treatment. It is clear that in 

both treatments, Player Bs almost never guesses red when the urn has less than 30% of red balls, and 

they always guess red when the urn has more than 70% of red balls. Interestingly, the probability that 

Player B guesses red is significantly positive when presented with urns with 40-50% (i.e., at least 40% 

and lower than 50%) of red balls, even though such a choice gives her a negative expected payoff. More 

specifically, in the 30-red-70-black treatment, the probability of guessing red is 0.39 which is 

significantly higher than zero, with p-value equal to 0.00 under the one-sample t-test. In the 50-red-50-

black treatment, the probability of guessing red is 0.19, which is also significantly higher than zero, 

with p-value equal to 0.00. The probability of guessing red spikes once the 50% mark is hit, though it 

falls short of 100% by a large margin. In the 30-red-70-black treatment, when presented with urns with 

50-52% of red balls, Player B guesses red with a probability of 0.56 only. When presented with urns 

with 52-54% of red balls, Player B guesses red with a probability of 0.7, which is significantly lower 



17 
 

than 1, with p-value equals to 0.00 under the one-sample t-test. These probabilities are even lower in the 

50-red-50-black treatment.  

These observations indicate that Player Bs’ behaviors are not completely consistent with expected-

utility maximization, which would call for guessing red whenever the proportion of red balls exceeds 

50%. It also stands in sharp contrast to the prediction of the standard Bayesian persuasion model that 

Player B’s response is a step function (equals 0 if the fraction is less than 50% and equals 1 if the 

fraction exceeds 50%).  

Result 1: Player B does not guess red for sure even if the urn contains more than 50% of red ball. For 

urns with fractions of red balls between 50% and 70%, the probability that player B guesses red is 

significantly lower than 1. 

 

Figure 3: Percentage of guessing red against urn composition 

 

Instead of being a step-function as predicted by standard Bayesian persuasion model, Figure 3 shows 

that Player Bs’ responses change continuously in the fraction of red balls in the urn. In fact, as the 

fraction of red balls increases from 30% to 70%, Player Bs’ probability of guessing red strictly 
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increases in a continuous manner. Column 1 of Table 1 reports the marginal effect coefficient 

estimations of the probability of guessing red. The independent variables are the percentage of red balls 

in the drawn urn, and a dummy variable for the 50-red-50-black treatment. It is confirmed that the 

higher is the percentage of red balls, the more likely that player B will guess red. Column 2 of Table 1 

reports the same regression for the subsample where the percentage of red ball in the drawn urn is 

higher than 50%. It is also found that the probability of guessing red increases with the percentage of 

red balls. Note that Bayesian persuasion predicts that the coefficient to be zero.  Hence, Hypothesis 1 is 

supported. 

Result 2: As the percentage of the red balls in the drawn urn increases from 30% to 70%, the 

probability of guessing red by Player B increases continuously. 

Table 1. Determinants of Probability of Guessing Red 

  

Dependent variable:     Guessing Red 

  (1) Full Sample 
(2) More than 50 Percentage 

of Red Ball in the Drawn Urn 

Percentage of Red Ball 0.02*** 0.02*** 

 

(0.001) (0.01) 

50-red-50-black Treatment -0.14*** -0.16*** 

 

(0.03) (0.17) 

Number of Observations 810 349 

   Pseudo R-square 0.50 0.18 

Notes: This table reports the marginal effect coefficient estimates of Probit regression. The independent 

variable Percentage of Red Ball is the percentage of red ball in the drawn urn. The independent variable 

50-black-50-red treatment is the dummy which equals to 1 for the 50-red-50-black treatment, zero 

otherwise. *, **, *** denotes significance at the 10%, 5%, and 1% levels, respectively. 

In the Bayesian persuasion treatment5 of the experiments conducted in Frechette, Lizzeri, and Perego 

(2017), they also find that the receivers’ (Player B) responses are not a step function. Rather, it is a 

linear function over the whole interval from 0% to 100%. In contrast, Figure 3 shows that in our 

experiments, Player Bs’ responses are not linear in the fraction of red balls. Instead, the probability of 

                                                           
5 See the subfigure for Treatment V100 in Figure 10 in Frechette, Lizzeri, and Perego (2017).  
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guessing red is flat in the interval from 0% to 30% and in the interval 70% to 100%, and strictly 

increases only in the 30%-70% range. This pattern is closer to the prediction of the model with 

reciprocity analyzed in Section 2 (see Figure 1). 

We now proceed to compare player B’s responses in the two treatments. Figure 3 shows that given the 

same fraction of red balls in the drawn urn in the range of 30-70%, the probability that player B guesses 

red is strictly lower in the 50-red-50-black treatment than the 30-red-70-black treatment for almost all 

fractions of red balls in the drawn urn. Moreover, as shown in Table 1, after controlling for the 

percentage of the red balls, player Bs in the 50-red-50-black treatments are significantly less likely to 

guess red. We also run additional regressions for the respective subsamples of urns with red balls 

exceeding 70 percent, and of urns with red balls less than 30 percent, and find no significant treatment 

differences in these subsamples. 

Result 3: An increase in the initial fraction of red balls weakly lowers the probability that the receiver 

guesses red for any urn composition, and strictly so when the fraction of red balls is in the range of 30-

70%. 

This result supports Hypothesis 2. In fact, this finding is very intuitive from the perspective of 

reciprocation. Consider, for example, the case of an urn with 50% of red ball is drawn. Facing such an 

urn, player B in the 30-red-70-black treatment may interpret that player B is relatively kind (as the 

percentage of red balls exceeds 30%) than the case of 50-red-50-black treatment where the percentage 

of red ball is the same as the initial condition. Hence, player B in the 30-red-70-black treatment is more 

likely to guess red. Our finding echoes that of Falk, Fehr, and Fischbacher (2003). They found that in an 

ultimatum game, subjects exhibited different reciprocity attitudes when faced with offers that are 

identical in monetary term but come from different sources. In other words, reciprocity depends on not 

only on the absolute value of the offer, but also the inferred intent. 

The subjects’ responses in the questionnaire answered at the end of the experiment sessions shed 

interesting light on the role of reciprocation concerns in their decisions. Subjects who were assigned the 

role of player Bs mentioned that they would choose black when there were 50% of red balls or the 

percentage of red balls did not exceed the black balls by large margin. The main reason mentioned was 

that they did not want to receive a zero payoff while letting player B receive 40 dollars. For example, 

one subject wrote “When the number of the balls is similar or red balls are only 2-3 balls more, I choose 

black as my answer, as the probability if winning is approximately 1/2 only. Therefore, even if I am 

wrong, Player A cannot get his pay.” Another subject wrote “If the ratio of red and black ball is 1:1. I 

would choose black ball so that player A can't get additional payoff.” It is also clear from the responses 
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that player B understood that in this case, the chance to win was 50%. Hence, player B’s behavior was 

not driven by mistaken probabilistic beliefs.    

Given player B’s responses differ from the prediction of standard Bayesian persuasion model, we can 

see that the empirically optimal ball allocation differs from the theoretically optimal urn based on the 

assumption that Player Bs are expected-utility maximizers (i.e., providing two urns, one of which has 

50% red balls and the other urn has 0% red balls). Specifically, applying the technique of Kamenica and 

Gentzkow (2011) by looking for the concave closure of the payoff function in posteriors, Figure 3 

reveals that in the 30-red-70-black treatment, the empirically optimal ball allocation consists of two 

urns, one of which has about 55% red balls, and the other has 0% red balls. The corresponding expected 

payoff to Player A is approximately (0.3/0.55)*0.9*40 = 19.64 dollars, significantly outperforming that 

of the equilibrium allocation predicted by the standard model (0.3/0.5)*0.6*40 = 14.4 dollars. The 

contrast is more striking in the 50-red-50-black treatment. In this case, Figure 3 reveals that the 

empirically optimal ball allocation consists of two urns, one of which has about 75% red balls, and the 

other has 0% red balls. The corresponding expected payoff to Player A is approximately 

(0.5/0.75)*1*40 = 26.67 dollars, significantly outperforming that of the equilibrium allocation predicted 

by the standard model (0.5/0.5)*0.25*40 = 10 dollars. 

Result 4: The empirically optimal ball allocation is different from the prediction of the standard 

Bayesian persuasion model. In particular, the empirically optimal ball allocation involves providing an 

urn with a fraction of red balls significantly exceeding 50%. 

 

4.2 Senders' Behaviors 

Figure 4 reports the empirical frequency of urn composition chosen by Player A by pooling the ball 

allocations of all subjects. In either treatment, urns with 0% red balls and 50-55% red balls are the most 

frequently offered urns. Interestingly, urns with more than 50% red balls are offered quite often. The 

proportions of urns with more than 55% of red balls are about 16.83% and 39.99% in the 30-red-70-

black treatment and 50-red-50-black treatment respectively. Both proportions are significantly different 

from zero, contradicting the prediction of the standard Bayesian persuasion model. More importantly, 

the proportion is significantly higher in the 50-red-50-black treatment than in the 30-red-70-black 

treatment, with a p-value of 0.00 under the two-sample t-test. 

Result 5: Player As choose urns with more than 50% of red balls quite often. The empirical frequency 

of urns with more than 50% of red balls is much higher in the 50-red-50-black treatment than the 30-

red-70-black treatment. 
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Figure 4: Distribution of Urns 

Result 5 is consistent with Hypothesis 3. In particular, Player A provides urns with composition that are 

more favorable to Player B in the 50-red-50-black treatment. This finding indicates that Player As in 

our experiments respond to the difference in Player B’s behavior across the two treatments.  

We find that, as Player As make more “generous” offers in the 50-red-50-black treatment, Player Bs 

indeed benefit a lot from a higher initial fraction of red balls. The average monetary payoff of Player Bs 

is 25.8 dollars and 17.3 dollars in the 50-red-50-black treatment and the 30-red-70-black treatment 

respectively. The difference is highly significant, with a p-value of 0.00 under a two-sample t-test. 

Similarly, Player A also benefit from an increase in the initial fraction of red balls. Their average 

monetary payoffs of Player As are 16.9 dollars and 12.1 dollars in the 50-red-50-black treatment and the 

30-red-70-black treatment respectively. The difference is again highly significant, with a p-value of 

0.00 under a two-sample t-test. We thus have the following result. 

Result 6: The average monetary payoff of both Player A and Player B are much higher in the 50-red-

50-black treatment than the 30-red-70-black treatment. 

This result supports the Hypothesis 4 that both players share the benefit of having a higher initial 

fraction of red balls. 
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We conclude with a brief discussion on the number of urns used by Player A. Recall that both the 

standard Bayesian persuasion model and our reciprocity model outlined in Section 2 predict that Player 

A uses, effectively, only two urns.6 We find that the number of effective urns in our experiment is close 

to two most of the time.7 As shown in Figure 5, Player A uses two urns most frequently in both 

treatments.  Moreover, the frequency of using all the 5 provided urns is only about 2%, indicating that 

we provide subjects with sufficient flexibility in their ball-allocation choice.  

 

Figure 5: Frequency of Number of Effective Urns  

5. Concluding Remarks 

In this paper, we introduce reciprocation incentives into the Bayesian persuasion model and derive 

novel implications concerning receiver’s responses and sender’s optimal information design. 

Specifically, we find that receivers are persuaded to take the sender’s preferred action only if the sender 

is willing to offer sufficiently informative signals. This result is analogous to the finding in ultimatum 

game experiments that responders often demand a “fair” division of the surplus and are willing to 

punish low offer by rejecting it. Understanding this, the proposer typically makes offers that are much 

more generous than the prediction of subgame-perfect Nash equilibrium. In a similar vein, if the 

receiver in a persuasion setting has reciprocal preference, the sender needs to design more revealing 

information structure in order to successfully persuade the receiver. Furthermore, when the prior belief 

                                                           
6 The theories can only predict the number of “effective” urns because Player A can design two different urns with 

identical composition (i.e., two different signals with identical likelihood ratios of states). 
7 We group urns with the similar percentage of red balls (within a three-percent difference) as one effective urn.  
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of the state is more favorable, the sender is deemed to have a higher (ex-ante) expected payoff, so the 

receiver would be more demanding in the sender’s information revelation. Results of laboratory 

experiments we conduct support these predictions.  

There are a number of exciting avenues for future research. First, the effect of reciprocity concern in 

other communication settings, such as cheap talk and disclosure of verifiable information, can be 

considered. It is interesting to investigate, theoretically and possibly experimentally, whether reciprocity 

concern improves or worsens the quality of information transmission in these settings. Second, the 

simplicity of our experiment design makes it possible to investigate persuasion behaviors in settings 

with multiple senders or multiple receivers.8 Finally, as receivers are likely to suffer bias in information 

processing (such as confirmatory bias and bounded memory), it is interesting to study how the optimal 

dynamic persuasion technique may exploit these biases.9 

 

  

                                                           
8 For multiple receivers, Alonso and Câmara (2016) consider persuading multiple voters in an election. For 

multiple senders, Au and Kawai (2017b) consider multiple competing senders persuading a receiver to sponsor 

their own proposals. 
9 For theoretical investigations on dynamic persuasion, see for example, Au (2015) and Ely et.al. (2015). 
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Appendix     

Proof of Proposition 1  Let (𝑝∗, 𝑞∗) be the sender's equilibrium strategy. Consider the receiver's 

problem after observing an urn with a fraction 𝑝 ≥ 𝜇 of red balls. His objective function is linear in σ. It 

is therefore clear that the optimal value of σ is 1 if the coefficient in front of σ is positive; 0 if it is 

negative; and any value in [0,1] is optimal if it is zero. Moreover, the coefficient in front of σ is positive 

if and only if 

𝜎𝑅(𝑝) <

(2𝑝 − 1)(𝑝 − 𝑞∗)
𝜆𝑅

+ (1 − 𝜇)(𝑝 − 𝑞∗) − 2(𝑝 − 𝜇)(1 − 𝑞∗)𝜎𝑅(𝑞
∗)

2(𝜇 − 𝑞∗)(1 − 𝑝)
≡ 𝐷(𝑝). 

Consequently, for 𝑝 ∈ [𝜇, 1],  𝜎𝑅(𝑝) is uniquely given by 

𝜎𝑅(𝑝) = {

0, 𝑖𝑓 𝐷(𝑝) < 0
𝐷(𝑝), 𝑖𝑓 𝐷(𝑝) ∈ [0,1]

1, 𝑖𝑓 𝐷(𝑝) > 1
. 

Following similar computation, if we define 

𝐷(𝑞) ≡

(2𝑞 − 1)(𝑝∗ − 𝑞)
𝜆𝑅

+ (1 − 𝜇)(𝑝∗ − 𝑞) − 2(𝜇 − 𝑞)(1 − 𝑝∗)𝜎𝑅(𝑝
∗)

2(𝑝∗ − 𝜇)(1 − 𝑞)
, 

then 𝜎𝑅(𝑞), for 𝑞 ∈ [0, 𝜇], is uniquely given by 

𝜎𝑅(𝑞) = {

0, 𝑖𝑓 𝐷(𝑞) < 0
𝐷(𝑞), 𝑖𝑓 𝐷(𝑞) ∈ [0,1]

1, 𝑖𝑓 𝐷(𝑞) > 1
. 

Next, observe that  

𝜕

𝜕𝑞
𝐷(𝑞) =  

2𝑞2 − 4𝑞 + 𝑝∗ + 1 + 𝜆𝑅(1 − 𝑝
∗)(1 − 𝜇)

2𝜆𝑅(𝑝
∗ − 𝜇)(1 − 𝑞)2

 

                         ≥  
(1 − 2𝑞)(1 − 𝑞) + 𝜆𝑅(1 − 𝑝

∗)(1 − 𝜇)

2𝜆𝑅(𝑝
∗ − 𝜇)(1 − 𝑞)²

≥ 0, 

as 𝑞 ≤ 𝜇 ≤
1

2
 in our model. Therefore, 𝐷(𝑞) ≤ 𝐷(𝜇) ≤

1

2
 and 𝜎𝑅(𝑞) ≤

1

2
. Similarly, 

𝜕

𝜕𝑝
𝐷(𝑝) =

−2𝑝² + 4𝑝 − 𝑞∗ − 1 + 𝜆𝑅(1 − 2𝜎𝑅(𝑞
∗))(1 − 𝑞∗)(1 − 𝜇)

2𝜆𝑅(𝜇 − 𝑞
∗)(1 − 𝑝)²

.  

As 𝜎𝑅(𝑞
∗) ≤ 𝐷(𝜇), the numerator is no less than 2(2𝑝 − 𝑝² − 𝜇 − 𝑞∗(1 − 𝜇)), which in turn is no less 

than 2(𝑝 − 𝜇)(2 − 𝜇 − 𝑝) as 𝑞∗ ≤ 𝜇. Therefore, 𝐷(𝑝) and hence 𝜎𝑅(𝑝) is weakly increasing in 𝑝. We 

have thus established that the function 𝜎𝑅(∙)  is weakly increasing and strictly so whenever 𝜎𝑅(∙) ∈

(0,1). 



27 
 

Furthermore,  

𝜕2

𝜕𝑝2
𝐷(𝑝) =

(1 − 𝑞)(1 − 𝜆𝑅(2𝜎𝑅(𝑞) − 1)(1 − 𝜇))

𝜆𝑅(𝜇 − 𝑞)(1 − 𝑝)
3

> 0. 

As 𝜎𝑅(. ) is strictly convex for 𝑝 ≥ 𝜇, it is suboptimal for the sender to choose a 𝑝∗ such that 𝜎𝑅(𝑝
∗) <

1. We thus have that 𝜎𝑅(𝑝
∗) = 1. 

To show that 𝑞∗ = 0, it suffices to show that given 𝜎𝑅(𝑝
∗) = 1, we have   

𝐷(𝑞)

𝑞
<

1

𝑝∗
 for all 𝑞 ∈ [0, 𝜇]. 

Using the definition of 𝐷(𝑞) and that assumption that 𝜆𝑅 ≤ 1, the last inequality holds if and only if 

(2𝑞 − 1)(𝑝∗ − 𝑞)𝑝∗ + (1 − 𝜇)(𝑝∗ − 𝑞)𝑝∗ − 2𝑝∗(𝜇 − 𝑞)(1 − 𝑝∗) − 2𝑞(𝑝∗ − 𝜇)(1 − 𝑞) < 0. 

It follows from straightforward computation that the left-hand side of the inequality above is strictly 

increasing in 𝑞. As 𝑞 ≤  𝜇 by definition, the inequality above holds if 𝜇(𝑝∗ − 𝜇)(𝑝∗ + 2𝜇 − 2) ≤ 0, 

which is true as 𝜇 ≤ 0.5.  

Finally, substituting 𝑞∗ = 0 into 𝐷(𝑝∗) = 1 gives the equilibrium value of 𝑝∗. Moreover, substituting 

𝜎𝑅(𝑝
∗) = 1 and 𝑞∗ = 𝜎𝑅(𝑞

∗) = 0 into the functions 𝐷(𝑝) and 𝐷(𝑞) defined above gives the receiver’s 

equilibrium strategy. Q.E.D. 

 

Proof of Corollary 2 In equilibrium, the sender’s expected monetary equilibrium payoff is given by 
𝜇

𝑝∗
. Using Proposition 1, and taking derivative with respect to 𝜇, we have 

𝜕

𝜕𝜇
(
𝜇

𝑝∗
) = 4

(1 − 𝜆𝑅)√(1 − 𝜆𝑅(1 + 𝜇))² + 16𝜇𝜆𝑅 + 𝜇𝜆𝑅(7 + 𝜆𝑅) + (1 + 𝜆𝑅)²

√(1 − 𝜆𝑅(1 + 𝜇))
2
+ 16𝜇𝜆𝑅 ((1 − 𝜆𝑅(1 + 𝜇) + √(1 − 𝜆𝑅(1 + 𝜇))

2
+ 16𝜇𝜆𝑅))

2 

It is clear that the derivative is positive. 

Next consider the receiver’s expected equilibrium monetary payoff, which is given by 
𝜇

𝑝∗
× 𝑝∗ +

(1 −
𝜇

𝑝∗
) × 1 = 1 − 𝜇(

1

𝑝∗
− 1). Using Proposition 1, and taking derivative with respect to 𝜇, we have 

𝜕

𝜕𝜇
(1 − 𝜇(

1

𝑝∗
− 1))

= 1 − 4
(1 − 𝜆𝑅)√(1 − 𝜆𝑅(1 + 𝜇))² + 16𝜇𝜆𝑅 + 𝜇𝜆𝑅(7 + 𝜆𝑅) + (1 + 𝜆𝑅)²

√(1 − 𝜆𝑅(1 + 𝜇))
2
+ 16𝜇𝜆𝑅 ((1 − 𝜆𝑅(1 + 𝜇) + √(1 − 𝜆𝑅(1 + 𝜇))

2
+ 16𝜇𝜆𝑅))

2 

Straightforward algebra shows that the derivative is positive if and only if 𝜆𝑅
2(1 + 𝜇)2 + (14𝜇 −

4)𝜆𝑅 − 5 > 0, or equivalently, 𝜆𝑅 > 
(2−7𝜇)+3√1−2𝜇+6𝜇²

(1+𝜇)²
. Q.E.D. 
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Appendix (Experimental Instructions (50-red-50-black treatment); for 

online publication) 

 

Instructions  

Welcome to our experimental study on decision-making. You will receive a show-up fee of 

HKD40. In addition, you can gain more money as result of your decisions in the experiment.  

You will be given a subject ID number. Please keep it confidentially. Your decisions will be 

anonymous and kept confidential. Thus, other participants won’t be able to link your decisions 

with your identity. You will be paid in private, using your subject ID, and in cash at the end of 

the experiment. 

When you have any questions, please feel free to ask by raising your hand, one of our assistants 

will come to answer your questions. Please DO NOT communicate with any other participants.  

General Instructions 

In this experiment, in each round, participants will be randomly matched into pairs. In each 

matched pair, one participant is assigned to the role of Player A; and the other the role of 

Player B. Your role will remain fixed throughout this stage of the experiment. You will not be 

told the identity of the participant you are matched with, nor will that participant be told your 

identity – even after the end of the experiment. 

This game consists of 10 rounds of decision-making. One round will be randomly selected at 

the end of the experiment for payment. The game has two steps, which we will describe as 

follows. 

Step 1 

In each round, there are 50 red balls and 50 black balls. Player A needs to allocate all of the 

100 balls into 5 urns. Player A will fill in the following table: 

 

 

 

 

Player A will determine the number of red balls and black balls in each of the urns. An empty 

urn is allowed. All of the 100 balls must be allocated to one of the urns; in other words, the 

sum of balls in the urns must be 100.   

Urn 1 2 3 4 5 

Red       

Black      
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Then, one urn will be randomly drawn. The total number of balls in each urn will determine the 

probability that the urn will be drawn. For example, if urn 1 contains 80 balls, then this urn will 

be drawn will probability 0.8.  

Player A can check the total number of balls allocated “Check” at the bottom of the table. If 

Player A has finished filling in the table, he/she can click “OK” to submit his/her decision. No 

further changes to the table can be made after clicking “OK”.  

 

Step 2 

After an urn is drawn, Player B will see a message on the screen specifying the number of red 

balls and number of black balls in the urn. For example: 

The urn contains 20 red balls and 20 black balls. 

Then, a ball will be randomly drawn from the urn, and player B will guess whether the ball 

drawn is red or black.  

 

Payoff 

Player A gets HKD 40 if player B guesses that the ball is red, regardless of the actual color of 

the ball drawn. Player A gets HKD 0 if player B guesses that the ball is black, regardless of the 

actual color of the ball drawn. 

If player B’s guess is the same as the ball drawn, he/she gets HKD 40. If the guess is incorrect, 

his/her payoff is zero.  

 

Information Feedback 

At the end of each round, you will be informed about (i) the urn drawn, (ii) the guess made by 

Player B, (iii) the color of the ball drawn, and (iv) your earning.  

 

Practice Round 

We will provide you with one practice round. At the beginning of the practice round, you will 

be randomly assigned the role of either Player A or Player B. Your role in the official rounds 

will be the same as that in the practice round. Once the practice round is over, the computer 

will tell you “The official rounds begin now!” 



30 
 

 

Administration 

Your decisions and your monetary payment will be kept confidential. Upon finishing the 

experiment, you will receive your cash payment. You will be asked to sign your name to 

acknowledge your receipt of the payment. You are then free to leave. 

If you have any question, please raise your hand now. We will answer your question 

individually. If there is no question, we will proceed to the practice round now.  
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Subject ID: 

Questionnaire 

Please answer Q1 if you are player A. 

Please answer Q2 if you are player B. 

 

Q1. Please explain how you determine the allocation of balls in the urns. 

 

 

 

 

 

 

 

 

Q2. Please explain how you choose between guessing on red and black ball.  

 

 

 

 

 


