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Abstract

Agents�decision whether to join a group, and their subsequent contribution
to a public good, depend on the group�s ideals. Agents have di¤erent preference
for this public good, e.g. reductions in greenhouse gas emissions. People who
become �climate insiders�obtain identity utility, but su¤er disutility if they de-
viate from the group ideal. That ideal might create a wide but shallow group,
having many members but little e¤ect on behavior, or a narrow but deep group.
Greater heterogeneity of preferences causes the contribution-maximizing ideal
to create narrow but deep groups. The contribution-maximizing ideal maxi-
mizes welfare if the population is large.
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1 Introduction

A group�s norms and ideals in�uence a person�s decision whether to join the group,
and potentially in�uence their subsequent behavior. Connections between group
ideals and agent behavior arise for many types of groups, so the results we obtain are
widely applicable. Because of its importance, we consider groups with di¤erent views
on climate change. Environmentalists accept the existence of anthropogenic climate
change, support public policy to reduce carbon emissions, and may make lifestyle
changes to reduce their carbon footprint. Climate skeptics refuse to take personal
action or to support public policy to reduce carbon emissions. An agent may obtain
utility from identifying with a particular group, but membership can also create costs,
pressuring members to increase their contribution to a public good.
In this �identity game�, based on Akerlof and Kranton (2000), the population has

a distribution of preferences for a socially bene�cial action, such as reducing carbon
emissions. Agents self-select into the green or non-green group. Those who join the
green group receive a warm glow or status- or commercial-related bene�t; they decide
how closely to match the group ideal, and bear costs associated with deviations from
the ideal. Those who do not join the group, do not change their behavior. Akerlof
and Kranton (2000) and extensions use the identity model to analyze behavior in
the workplace, the school and the family, focusing on discrimination, poverty, labor
division, and corporate culture (Akerlof and Kranton, 2002, 2005, 2008, 2010, Hiller
and Verdier, 2014). Most of these models take the ideal prescribed by the group as
�xed; we determine the optimal level of ideal.1

In our setting, the green ideal is a recommended level of contribution to the public
good, such as a level of abatement. The rigor of this ideal in�uences the self-selection
and the behavior of those who identify as green. A demanding ideal might lead to
signi�cant changes in behavior, but only amongst the small group that self-identi�es
as green: this group is deep but narrow. A relaxed ideal can lead to large green
membership but only modest changes in behavior: a wide but shallow group.
The ideal that maximizes aggregate contributions to the public good depends

on the distribution of preferences. Under uniformly distributed preferences, width
trumps depth when agent heterogeneity is small: the contribution-maximizing ideal
makes the agent with weakest green preferences indi¤erent between joining the green
group and remaining outside. When preference heterogeneity is large, it is too ex-
pensive to attract all agents into the group, but many of those who join signi�cantly
increase their contribution to the public good; here, depth trumps width. For more

1In a school setting, Akerlof and Kranton (2002) consider a tradeo¤ in choosing the school�s
ideal: A higher ideal raises the e¤ort choice of those in the right tail of the distribution but causes
other students to reject the school and exert less e¤ort. They do not solve for the optimal ideal
though. Other approaches of modelling identity include oppositional identities (Bisin et al 2011),
social identity as collective reputation (Carvalho, 2016) and identity investment when a player has
incomplete information on her own type (Bénabou and Tirole, 2011). In Shayo (2009), identity
utility is derived from status while identity cost comes from deviation from other group members�
behavior rather than an ideal. Almudi and Chóliz (2011) introduce an environmentally friendly
identity which only depends on the individual�s consumption level, while there is no ideal behavior
or social categorization in their model. Costa-i-Font and Cowell (2013) review the related literature.
Our approach is also related to Hsiaw (2013) who considers an individual setting a goal to deal with
self-control problems.

1



general preference distributions, the contribution-maximizing ideal depends on skew-
ness. If the distribution is symmetric, greater preference heterogeneity still leads to
a narrow but deep group, as in the case of uniform distribution.
Agents�individually rational behavior constrains the possibility of increasing con-

tributions by means of manipulating the group ideal: beyond some level, the greater
depth arising from a higher ideal does not make up for the resulting loss in width.
In important cases, this constraint is binding for the welfare-maximization problem;
here, the contribution-maximizing ideal also maximizes welfare. However, for some
distributions of preferences, the welfare-maximizing ideal exceeds the level that max-
imizes contributions. In this situation it is feasible but not optimal to increase contri-
butions by lowering the ideal. Here, an ideal above the contribution-maximizing level
increases welfare by improving the match between types and levels of contribution.
The characterization of the optimal ideal is analogous to the result in the mecha-

nism design problem with adverse selection (La¤ont and Martimort, 2001). There, a
principal delegates production decisions to agents who have private information about
their e¢ ciency. The optimal menu of o¤ers induces both types of agents to produce
if the di¤erence in e¢ ciency is small; in contrast, when the di¤erence in e¢ ciency
is large, it is not worthwhile attracting the ine¢ cient agent, and the optimal menu
attracts the e¢ cient agent only. The trade-o¤s in the two problems are similar: In
the mechanism design problem, the principal trades o¤ between the rent extracted
from the e¢ cient agent and the participation of the ine¢ cient agent; in the identity
model, the trade-o¤ is between the contribution by strong-preference individuals and
the participation of the weak-preference individuals.
Agents might be individuals or actors such as companies, cities, or states. In-

dividuals can contribute to the public good by reducing their energy consumption
below their individually rational level. California�s steps to reduce carbon emissions
perhaps exceed e¤orts that would maximize its (narrowly construed) welfare. Some
explanations for this behavior are unrelated to identity: Californians might expect
bene�ts from early adoption or they might believe that their demonstration will en-
courage others to follow their lead. However, identity bene�ts can be an important
motivator. For individuals, these bene�ts might be psychological, but for companies
or states, there may be brand-related commercial bene�ts or political prestige.
Individuals�self-identi�cation and behavior are correlated. Kotchen and Moore

(2008) �nd that environmentalists are more likely to voluntarily restrain their con-
sumption of goods and services that generate negative externalities. Kahn (2007)
�nds that those who vote for green policies and register for liberal/environmental po-
litical parties live a greener lifestyle, commuting by public transit more often, favoring
hybrid vehicles, and consuming less gasoline than non-environmentalists.
Psychologists and management scientists show that persuasion strategies or nudges

can change behavior (Thaler and Sunstein 2008, Schultz et al 2007, Goldstein, Cial-
dini, and Griskevicius, 2008). Costa and Kahn (2013) �nd that an electricity conser-
vation nudge that provides feedback to households on their own and peers�electricity
usage is much more e¤ective with liberals/environmentalists than with conservatives.
These authors ascribe the asymmetry to self-identi�cation: the ideologies that peo-
ple accept, in�uence their behavior. Here, nudges appear useful only for those who
identify with the ideology embedded in the nudges; the goals or norms provided by
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one group have little impact on people who do not belong to that group.
An extensive behavioral economics literature studies public goods. A moral im-

perative, arising from introspection and associated with Kantian absolute laws, can
enhance public good provision (Brekke, Kverndokk and Nyborg, 2003). In the Ak-
erlof and Kranton (2000) framework, the ideal is a social but perhaps not moral norm;
people�s acceptance of the social norm a¤ects their self-selection into social categories.
Fehr and Schmidt (1999) examine the role of inequality aversion in voluntary public
good contribution. Andreoni (1990) and Holländer (1990) consider warm glow and
social approval as by-products of contributing to a public good. These studies do not
consider self-selection into social groups, the focus of our paper. Rege (2004) endog-
enizes the strength of social approvals, emphasizing interactions among contributors
and non-contributors, in a model without an ideal public good contribution.
Group identity has signi�cant e¤ects on interpersonal interactions even in labo-

ratory settings (Chen and Li, 2009). Empirical evidence demonstrates the role of
identity in public good provision outside the laboratory. Burlando and Hey (1997),
Benjamin, Choi and Fisher (2010), Solow and Kirkwood (2002), and Croson, Marks
and Snyder (2003) estimate the e¤ects of national, religious, social and gender iden-
tities on public good contribution.
Section 2 develops the model and Section 3 discusses the ideal that maximizes

the expected level of public good contribution or social welfare. Section 4 concludes.
Short proofs appear in footnotes, and longer proofs in the Appendix.

2 The Model

The population contains N agents, each of whom makes a voluntary contribution
to a public good. In the environmental context, the contribution equals pollution
abatement. Agent i contributes ai, for i 2 f1; 2; :::; Ng, incurring the private cost
1
2
a2i . Agent i�s constant marginal utility of the public good is the realization of
an identically and independently distributed random variable �i, having continuous
probability density function f (�i) and cumulative distribution function F (�i) de�ned
on
�
�; �

�
, with � > � > 0. Many public economics models use these functional

assumptions, which lead to a simple equilibrium in dominant strategies (e.g. Barrett
1994, Goeschl and Perino 2015 and Ali and Bénabou, 2016).
The heterogeneity of �i may be due to di¤erences in tastes, information, business

opportunities, or social preferences. An individual�s preference for air quality may
depend on income, which a¤ects their opportunities for adaptation (e.g. air condi-
tioning or �lters). A state�s preference might depend on population density. Environ-
mentalists and climate skeptics may have di¤erent information or beliefs about the
consequences of the accumulation of Greenhouse gas (GHG), and therefore about the
bene�t of abatement.2

2Altruism/spite can also create heterogeneity of �i. Hammond (1987) characterizes altruism
and discusses its relevance in public good provision. Cason and Saijo (2002), and Cason et al.
(2004) provide empirical evidence of spite in public good games. If �i incorporates altruism, rather
than merely tastes and beliefs, the socially optimal level of abatement must take that altruism into
account in evaluating the costs as well as the bene�ts of abatement (Bergstrom 2006). To avoid this
complication, we assume that heterogeneity of �i arises from reasons unrelated to altruism.
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Agent i�s utility associated with the public good (ignoring identity-related utility)

is �i
�
ai +

P
j 6=i aj

�
� 1

2
a2i . The agent takes as given other agents� contributions.

Without identity-related utility (our baseline), agent i chooses ai to maximize �iai�
1
2
a2i , resulting in the baseline level of abatement

abi = �i > 0: (1)

2.1 Identity and Utility

The group ideal level of contribution to the public good, a�, a¤ects the sorting of
agents and the public good contribution of those who join the group. Section 3
discusses the choice of the ideal. �Insiders� self-select into the green group, and
identify with the ideal; �outsiders� ignore the ideal and choose abi . Individuals who
join the green group obtain utility from being an insider, V > 0. Insiders have a
sense of belonging and a feeling of pride. Companies, cities, or states may obtain
commercial or political bene�ts associated with green membership, V . V is a club
good.
Insiders who deviate from the ideal su¤er a utility loss. An insider who contributes

not more than the ideal (weakly) under-contributes, and one who contributes more
than the ideal over-contributes. Their losses are

under-contributing insider�s loss (if ai � a�): �2 (ai � a
�)2

over-contributing insider�s loss (if ai > a�):

2
(ai � a�)2 :

Under-contributors may feel guilty about contributing less than the group ideal.
Companies or states that strictly under-contribute may be vulnerable to bad pub-
licity. Over-contributors might also incur disutility from exceeding the ideal. Monin,
Sawyer, and Marquez (2008) provide experimental evidence showing that people�s
positive self-image may be threatened by those who �do the right thing�, leading to
resentment against them, and a utility loss for over-contributors. Bénabou and Tirole
(2011) endogenize the ostracism towards the virtuous �do-gooders�. We adopt Ak-
erlof and Kranton�s (2002) assumption that the utility loss is a quadratic function of
the gap between the insider�s action and the ideal level, but we relax their assumption
of symmetric loss. With � � 0 and  � 0, the model includes both the symmetric
loss case ( = �) and the case where there is no loss from over-contribution ( = 0).
The game�s timeline is:

� At stage 0, an in�uential entity chooses (or adjusts) the ideal a�.

� At stage 1, agents learn their types and individually decide whether to identify
with the ideal a� (and become an insider) or remain an outsider.

� At stage 2, agents individually choose their public good contribution.
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2.2 Public Good Contributions (Stage 2)

Because identity does not a¤ect the outsider�s preference, an outsider contributes abi .
An insider with �j solves:

max
aj
Uj (ajja�) =

(
�jaj � 1

2
a2j � �

2
(aj � a�)2 + V if aj � a�

�jaj � 1
2
a2j � 

2
(aj � a�)2 + V if aj > a�:

(2)

Lemma 1 An insider (superscript i) with �j contributes

aij =

8<:
�(a���j)
1+�

+ �j if �j � a�

(a���j)
1+

+ �j if �j > a�:
(3)

De�ne�(�j) = aij�abj, the change of public good contribution due to membership
in the group:

�(�j) =

8<:
�(a���j)
1+�

� 0 if �j � a�

(a���j)
1+

< 0 if �j > a�:
(4)

Equation (4) implies:3

Remark 1 The e¤ect of a� on an insider�s contribution depends on whether the agent
is an under- or over-contributing insider, and is proportional to the gap a� � �j.
Membership increases an under-contributing insider�s action and decreases an over-
contributing insider�s action.

Figure 1 illustrates the relation between a�, abj and a
i
j, when a

� 2
�
�; �

�
. A larger

utility loss from deviating from the ideal (larger � or ) induces the insider to move
toward the ideal.4

Remark 2 Membership in the green group decreases the di¤erence between the con-
tributions of insiders with di¤erent preferences, but might increase or decrease the dif-
ference in contributions between insiders and outsiders: For any a� and any �j > �i,
ab (�j)� ab (�i) � ai (�j)� ai (�i).

Figure 1 shows that jai (�j)� ai (�i)j <
��ab (�j)� ab (�i)�� for any �j 6= �i. Suppose

that an agent with �i becomes an insider and an agent with �j remains an outsider.
With either �i < a� < �j or �j < a� < �i, there is convergence in contribution
between the insider and the outsider:

��ab (�j)� ab (�i)�� > ��ab (�j)� ai (�i)��. In con-
trast, with either �j < �i < a� or �j > �i > a�, there is divergence in contribution:��ab (�j)� ab (�i)�� < ��ab (�j)� ai (�i)��.

3We con�rm Remark 1 using Lemma 1 and Equations (1) and (4); these imply that when �j � a�,
�j � aij � a� and when �j > a�, �j > aij > a�.

4For �j � a�,
daij
d� =

a���j
(1+�)2

� 0 and for �j > a�,
daij
d =

a���j
(1+)2

< 0.
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Figure 1: The solid line shows aii, and the dashed line shows a
b
i = �i.

�
�; �

�
= [0; 9=5],

a� = 7=8, � = 3=2,  = 1=4:

2.3 Self-selection (Stage 1)

At stage 1, agents compare their utility as insiders and outsiders and decide whether
to join the green group. Strategies are dominant, so the agent�s choice does not
depend on other agents�action. Using Equation (1) and suppressing the payo¤ due
to other agents�actions, agent i�s utility of remaining an outsider equals

�2i �
1

2
�2i =

1

2
�2i : (5)

Using Equation (3) in Expression (2), the insider�s utility equals

1
2
�i(�i+2�a

�)��a�2
1+�

+ V if �i � a�

1
2
�i(�i+2a

�)�a�2
1+

+ V if �i > a�:
(6)

De�ne

B �
�
2V (1 + �)

�

�1=2
and D �

�
2V (1 + )



�1=2
:

These measures increase with identity utility (V ) and decrease with the insiders�
cost of departing from the ideal (� and ). B and D thus provide measures of
attractiveness of joining the group to under- and over- contributors. Under the tie-
breaking assumption that an agent who is indi¤erent between the choices decides to
join the group, we have:

Lemma 2 Agents with

�i 2
�
max

�
a� �B; �

�
;min

�
a� +D; �

��
join the group, and other agents remain outsiders. Among the insiders, agents with
�i � a� are under-contributors, while agents with �i > a� are over-contributors.
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An increase in the attractiveness of joining the group, B or D, (weakly) increases
the domain of insiders. De�ne

I� = max
�
a� �B; �

�
; I+ = min

�
a� +D; �

�
; I� =

8<:
� if a� > �

a� if a� 2
�
�; ��

�
� if a� < �

:

We divide the domain of insiders, [I�; I+], into the domain of under-contributors,
[I�; I�], and of over-contributors, (I�; I+]. We have5

Remark 3 The largest increase in individual contribution that can be implemented
by a group ideal is �

1+�
B.

3 Choice of the Group Ideal (Stage 0)

An in�uential person or entity nudges the ideal, prior to the membership decisions,
in order to increase provision of the public good. In�uence-molders such as Al Gore
or James Hansen, or those who support them, may be able to use the media, schools,
and churches to alter the green ideal. Political entities may be able to use non-
binding contracts or international agreements to adjust the green ideal. We identify
the choice of a� that maximizes provision of the public good, and show when this
level also maximizes aggregate welfare.
Denote by g (a�) the expectation, at stage 0, of the e¤ect of a� on a random agent�s

contribution to the public good. Using Equation (4), an agent�s expected increase in
contribution is:

g (a�) =


1 + 

Z I+

I�
(a� � �i) f (�i) d�i +

�

1 + �

Z I�

I�
(a� � �i) f (�i) d�i: (7)

Lemma 3 provides bounds on the contribution-maximizing ideal:6

Lemma 3 The contribution-maximizing ideal lies in the interval
�
�; � +B

�
.

Equation (7) shows that a higher a� increases insiders�contributions, leading to a
deeper group. The ideal also a¤ects the ranges of the under- and over-contributing in-
siders, [I�; I�] and (I�; I+], altering the group�s width. The contribution-maximizing
a� typically involves a trade-o¤ between depth and width.

5By Equation (4), the largest increase in contribution implemented by the ideal a� is
�(a��I�)

1+� .

Using Lemma 2, this increase equals
�(a��max(a��B;�))

1+� . This function increases in a� for a� < B+�
and is constant at �B

1+� for a
� � B + �:

6An ideal a� � � weakly decreases contributions. For this ideal, I� = �, so all insiders (if any) are
over-contributors: membership decreases their contribution. An ideal a� � � + B implies I� = �,
meaning that a� is too high to attract any insiders, so it does not a¤ect the public good contribution.
Therefore, g (a�) � 0 if a� � �, and g (a�) = 0 if a� � � + B. Note that Remark 3 provides the
upper bound on the increase in contribution, conditional on being an insider. Lemma 3, in contrast,
is a statement about the unconditional expected increase in contribution.
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3.1 Uniformly Distributed Preferences

Here we assume that �i is uniformly distributed over
�
�; �

�
, as in Tabarrok (1998),

Barbieri and Malueg (2008), and Kotchen (2009). We �rst consider the relation
between the ideal and expected contributions, and then turn to welfare e¤ects. We
let �a denote the ideal that maximizes the expected contribution.

Proposition 1 Under uniformly distributed �i, (i) �a = max
�
� +B; �

	
maximizes

g (a�); it is the unique maximizer if  > 0; (ii) when � � � < B (so �a = � + B) the

e¤ect of this ideal on expected individual contributions is g
�
� +B

�
= �

1+�

�
B � ���

2

�
,

and when � � � � B (so �a = �) the e¤ect of the ideal is g
�
�
�
= �

1+�
B2

2(���)
= V

��� .

3.1.1 Intuition

The e¤ect of the ideal depends on its in�uence on the depth and width of the group.
The width depends on the triplet (I�; I�; I+), which gives the ranges of �i for agents
who join either as under- or over-contributing insiders. By Remark 1 and Equation
(4), the increase in insider i�s contribution is proportional to a� � �i. Figures 2 and
3 illustrate the contribution-maximizing �a when B � � � � and when B < � � �,
respectively.
First suppose B � � � �, where the contribution-maximizing ideal is �a = � +

B � �. Here, every agent becomes an under-contributing insider (Lemma 2), so
(I�; I�; I+) =

�
�; �; �

�
. The ideal increases contributions of the lowest-preference

agent by an amount proportional to B and of the highest-preference agent by an
amount proportional to � � � + B. The trapezoid abcd in Figure 2 represents the
total e¤ect of the ideal a� = � + B on expected contribution.7 Slightly increasing
or decreasing a� from � + B are both counterproductive. A small decrease of a� to
�+B��, where � is a small positive number, does not alter the triple (I�; I�; I+). The
perturbation makes the group shallower but no wider. The trapezoid hbci (which is
smaller than the original trapezoid abcd) represents the contribution under this ideal.
Next consider a small increase of a� to �+B+�, implying (I�; I�; I+) =

�
� + �; �; �

�
.

This perturbation induces the insiders with �i 2
�
�; � + �

�
to drop out, making the

group narrower. The trapezoid fgce represents the e¤ect of the ideal a� = �+B+ �.
The area of the trapezoid abcd is larger than that of the trapezoids hbci and fgce.
Next suppose B < � � �, where the contribution-maximizing ideal is �a = �

leading to (I�; I�; I+) =
�
� �B; �; �

�
by Lemma 2. Under this ideal, agents with

�i 2
�
� �B; �

�
are under-contributing insiders, while lower-preference agents stay

out. The area of triangle abc in Figure 3 represents the ideal-induced increase in con-
tributions. Slightly increasing or decreasing a� from � are both counterproductive.
The perturbation that reduces a� to �� � causes (I�; I�; I+) =

�
� � ��B; � � �; �

�
;

this perturbation encourages agents with �i 2
�
� � ��B; � � �

�
to contribute, but

7We compare areas of polygons to show the e¤ect of perturbations on expected contributions.
In every case, the actual e¤ects on contributions are proportional to these areas, with the factors
of proportionality equal to either �

1+� or

1+ . As shorthand, we say that the area �represents�the

e¤ect on contributions.
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Figure 2: The expected e¤ect of a� on contribution: B � � � �. The downward
sloping lines are all 45 degree lines.

discourages agents with �i 2 (���; �] from contributing. It does not change contribu-
tions from under-contributors: the areas of triangles ghi and abc are equal. However,
the perturbation creates a set of over-contributors; the area of triangle ijc represents
the decreased contributions from these agents. A perturbation that increases the ideal
to �+ � causes (I�; I�; I+) =

�
� + ��B; �; �

�
. The trapezoid cdef , which is smaller

than the area of the triangle abc, represents contributions under this perturbation.

3.1.2 Implications

The contribution-maximizing ideal is high enough to encourage all insiders to weakly
increase their contribution to the public good (aij � �a):

Corollary 1 Under uniform distribution of �i, an ideal that maximizes the expected
contribution to the public good never elicits over-contribution.

Proposition 1 implies that when preference heterogeneity is small (� � � � B),
the contribution-maximizing ideal attracts all agents to become insiders, and weakly
increases their public good contribution; the resulting group is wide but shallow.
Here, the agent with the lowest demand for the public good (�i = �) is indi¤erent
between becoming an insider and staying out. This conclusion is consistent with
Knack and Keefer�s (1997) and Hardin�s (2005) empirical �nding that in more ho-
mogeneous societies, there is typically a higher degree of acceptance to social norms.
For non-controversial campaigns, such as those that encourage people to use public
transportation to reduce tra¢ c congestion, most people accept the ideal promoted.
When preference heterogeneity is large (� � � > B), the contribution-maximizing
ideal equals the baseline contribution of the agent with the highest demand for the
public good �a = � = ab

�
�
�
, leading to a narrow but deep group; only agents with

su¢ cient demand for the public good are attracted to be under-contributing insiders;
the others remain outsiders.
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Figure 3: The expected e¤ect of a� on contribution: B < � � �. The downward
sloping lines are all 45 degree lines.

People have diverse and even contradictory views about climate change, leading to
considerable public disagreement about the value of GHG abatement: there is large
preference heterogeneity for this public good. Al Gore�s receipt of the Nobel prize
arguably increased the value of membership, V , and the level of the ideal. A stricter
ideal might have changed insiders�behavior; it could also have persuaded some people
to remain climate skeptics: a stricter low-carbon ideal/target might discourage some
people from identifying with climate insiders, leading to higher emissions.
Proposition 1.ii identi�es the expected change of an agent�s public good con-

tribution under the contribution-maximizing ideal. The following remark collects
additional comparative statics.

Remark 4 (i) If � � � < B, the contribution-maximizing ideal, �a = � + B =

�+
�
2V (1+�)

�

�1=2
, is increasing in V and decreasing in �. (ii) If ��� � B, under the

contribution-maximizing ideal, �a = �, agents with �i � � �B become insiders. Here,

the expected proportion of insiders is B
��� =

1
���

�
2V (1+�)

�

�1=2
, which increases in V ,

and decreases with both � and with agent heterogeneity, � � �. (iii) In all cases, the
expected increase in public good contribution, g(�a) increases in V and decreases in
� � �. (iv) The contribution-maximizing ideal, its associated proportion of insiders,
and g (a) are independent of .

These claims follow from inspection. Note that B =
�
2V (1+�)

�

�1=2
increases in

V , the identity utility of membership, and decreases in �, which determines under-
contributors�cost of departing from the ideal. Therefore, the contribution-maximizing
ideal increases in V and decreases in � when agent heterogeneity is small; moreover,
the expected proportion of agents accepting the ideal increases in V and decreases
in � when the agent heterogeneity is large. Because there are no over-contributors
under the contribution-maximizing ideal (Corollary 1), the over-contributors� cost
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Figure 4: The horizontal line represents �, with the origin set at � = �. The solid
curve shows the contribution-maximizing ideal while the dashed curve shows the
proportion of insiders under this ideal, assuming � +B > 1.

of departing from the ideal (determined by ) has no e¤ect on: the contribution-
maximizing ideal; the proportion of insiders; or the level of public good contribution.
Preference heterogeneity, � � �, a¤ects the contribution-maximizing ideal, the

resulting size of the insider group, and the e¢ cacy of identity. In Figure 4 (for
� +B > 1), the solid curve shows the contribution-maximizing ideal and the dashed
curve shows the proportion of insiders under this ideal. Fixing �, when ��� � B, the
contribution maximizing ideal equals � + B, where all agents join the group. When
� � � > B, the contribution-maximizing ideal increases in (and is equal to) �, and
the proportion of insiders decreases in �. Social identity is less e¤ective in enhancing
public good contribution in a more heterogenous population (Remark 4.iii).
Remark 2 notes that identity may lead to convergence or divergence in contri-

butions across insiders and outsiders . We revisit this issue under the contribution-
maximizing ideal, �a. When � � � < B, where all agents are insiders, Remark 2 im-
plies that identity leads to convergence in contribution among any two agents. When
� � � � B, with a� = �a, the gap in public good contribution between insiders and
outsiders increases; here, agents with �j � � � B become insiders and increase their
contribution, while outsiders do not change their contribution. This result is consis-
tent with the asymmetric e¤ects, across groups, of energy conservation nudges (Costa
and Kahn, 2013). The nudges in�uence insiders (political liberals/environmentalists)
but not outsiders (political conservatives). The outsiders do not identify with the
ideology embedded in the nudges, so the nudges widen the gap in energy use between
the two groups of people.

3.1.3 Welfare

Welfare assessments for behavioral models can be controversial (Bernheim and Rangel,
2005). We adopt a welfare criterion, M (a�), that considers only the direct costs and

11



bene�ts arising from actions, not the psychological e¤ect of identity on utility:

M (a�) = E�1;:::;�N

"
�i

 
ai +

X
j 6=i

aj

!
� 1
2
a2i

#
: (8)

The function M (a�) represents materialistic welfare, permitting an apples-to-apples
comparison between the cases with and without identity. The identity-related utility,
V , might be manipulated by opinion-makers promoting the ideal or it might include
commercial or political advantages that have o¤setting costs. For example, a stronger
green brand for insiders amounts to a relatively weaker brand for outsiders. By
ignoring identity bene�ts in the welfare criterion, we avoid taking a stand on the
extent to which they are manipulated or impose o¤setting costs.
The di¤erence between the �rst-best level of expected contribution, NE (�i), and

the expected baseline level, E (�i), is

n � (N � 1)E (�i) ;

n is the unconstrained �rst-best increase in expected contribution.

Proposition 2 If

n � B
�

�

1 + �

�
; (9)

then the contribution-maximizing ideal, a� = �a, maximizes expected welfare, M (a�),
subject to the contribution constraints in Equation (3) and the participation decisions
stated in Lemma 2.

Inequality (9) states that the unconstrained �rst-best increase in expected contribu-
tion (n) weakly exceeds the maximum ideal-induced increase in an insider�s contribu-
tion (the right side of the inequality, by Remark 3).8 This condition is su¢ cient but
not necessary; it holds if the population (N) is large.
Identity increases agents�expected contribution. Each agent bene�ts from other

agents�higher contribution, but insiders incur a cost from deviating from their base-
line, �i. The contribution-maximizing ideal, �a, is independent of N , so the insiders�
expected cost due to contributing more than their baseline level is also independent
of N . However, the bene�t due to other agents�higher contribution is proportional to
N . For su¢ ciently large N , the agent�s bene�t resulting from other agents�increased
contribution exceeds the cost due to its own increased contribution, over the domain
of contributions that can be supported by a group ideal.

8A calculation shows that, for the uniform distribution, Inequality (9) implies that n � g (�a). If it
were possible to write welfare of the representative agent, M (a�), as a function of only the expected
increase in abatement, relative to the baseline, and if in addition that function were quasi-concave,
then n � g (�a) would imply that the contribution-maximizing ideal also maximizes welfare. However,
the proof of Proposition 2 is more complicated, because M (a�) depends on the distribution of the
expected increase in abatement, not only on the expected increase in abatement.
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3.2 General Distribution of Preferences

Here we consider the set of preference densities that nest increasing and decreasing
density functions, the uniform density, and the single-peaked density.

Assumption 1 The density function for preferences, f (�), is continuously di¤er-
entiable over the support

�
�; ��

�
. There exists �̂ 2

�
�; ��

�
such that f 0 (�i) � 0 for

�i 2
�
�; �̂

�
, while f 0 (�i) � 0 for �i 2

�
�̂; �

�
.

The density function is weakly decreasing if �̂ = �, weakly increasing if �̂ = �, single-

peaked if �̂ is unique, and uniform if f 0 (�) = 0 for all �. If �̂ has multiple values, let
min �̂ and max �̂ denote its minimum and maximum values respectively.
We focus on a most important case, where  = 0. Agents with �i � a� identify

with the ideal but contribute their baseline, and incur no disutility. The in�uence-
molder does not have to worry about discouraging high-demand agents from con-
tributing, and can focus on the trade-o¤ between attracting more under-contributing
members and increasing their contributions.
The contribution-maximizing ideal depends on the distribution�s shape, and es-

pecially on its skewness. For a symmetric distribution, the contribution-maximizing
ideal again depends on the preference heterogeneity, as under the uniform distribu-
tion. With  = 0, Equation (7) simpli�es to

g (a�) =
�

1 + �

Z I�

I�
(a� � �i) f (�i) d�i: (10)

The expected contribution-maximizing ideal maximizes g (a�). Proposition 3 identi-
�es the trade-o¤ between depth and width in setting the ideal.

Proposition 3 Under Assumption 1 with  = 0, if

Bf
�
�
�
� F

�
� +B

�
; (11)

then the ideal �a = � +B maximizes g (a�). If inequality (11) fails, �a > � +B, where
�a is a solution to

Bf (�a�B) = F (�a)� F (�a�B) : (12)

Moreover, �a 2
h
max

n
� +B;min �̂

o
;max �̂ +B

i
.

When Inequality (11) holds, the contribution-maximizing ideal makes the agent
with the lowest demand indi¤erent between joining; all agents join. If Inequality
(11) fails, the contribution-maximizing ideal is larger than � + B, attracting only
agents with su¢ ciently high preference. The shape of the distribution a¤ects whether
Inequality (11) holds.
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Figure 5: The left �gure shows the situation where Bf
�
�
�
> F

�
� +B

�
, while the

right �gure shows the situation where Bf
�
�
�
� F

�
� +B

�
.

3.2.1 Intuition

The contribution-maximizing ideal is at least as large as �+B. A lower ideal implies
that I� = �. Increasing that ideal raises both the mass of under-contributors and
each of their contributions; there are no e¤ects on over-contributors because  = 0.
A trade-o¤ exists only when a� � � + B. Inequality (11) means that the cost of a
marginal increase of a� at � + B outweighs its bene�t. With the marginal increase
in a�, agents with �i = � drop out, reducing the group�s width. The density of these
agents is f

�
�
�
. Membership causes those agents to increase their contribution by an

amount proportional to a� � �i = B. (See Remark 1; the factor of proportionality is
�
1+�
.) The loss in contributions when those agents drop out is therefore proportional

to Bf
�
�
�
. Membership increases contributions by an amount proportional to a���i

so a marginal increase in the ideal (leading to an increase in the group�s depth)
increases contributions by an amount proportional to F

�
� +B

�
, the measure of

under-contributing insiders. Inequality (11) states that the loss due to a marginal
increase in the ideal, at a� = � +B, is at least as great as the gain.
This situation arises when the distribution of preference is skewed towards the

lower end, as in Figure 5(A). In both Figures 5(A) and 5(B), Bf
�
�
�
equals the area

enclosed in the dotted red lines (a rectangle), and F
�
� +B

�
is the area below the

solid blue line (and enclosed by the blue dashed lines). Therefore Inequality (11)
holds if the distribution is su¢ ciently skewed towards the lower end, as in Figure
5(A). Figure 5(B) illustrates a situation where Inequality (11) does not hold. Here,
it is worth excluding the agents with the lowest preference to encourage remaining
insiders to contribute more.
Remark 1 also helps in understanding the optimality condition when �a > � + B,

Equation (12). At the solution to this equation, a marginal increase in the ideal causes
the lowest preference members, with density f (�a�B), to drop out. Membership
increases each of these agents�contribution by an amount proportion to B, so their
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defection reduces contributions by an amount proportional to Bf (�a�B), the left
side of the equation. The higher ideal causes a proportional marginal increase in each
of the under-contributing members�contribution; their measure is F (�a)�F (�a�B),
the right side of the equation. At the contribution-maximizing ideal, the marginal
loss, due to an increase in the ideal, equals the marginal gain.
For a single-peaked distribution (�̂ is unique and therefore min �̂ = max �̂), the

last line of Proposition 3 implies that the contribution-maximizing ideal is (weakly)
higher than the mode, �̂, but small enough to induce the modal agents to join. A
marginal increase in the ideal from a� to a� + " (" > 0) causes agents in the interval
of [a�; a� + "] to become under-contributing insiders, and agents in the interval of
[a� �B; a� �B + "] to drop out. Thus, a small increase in a� changes the measure of
insiders by

� (a�; ") � F (a� + ")� F (a�)� [F (a� �B + ")� F (a� �B)] :

This perturbation also increases the existing members�contributions by an amount
proportional to their measure, F (a�)� F (a� �B). If a� < b� (the single peak), then
the perturbation increases both the measure of members, and their contributions;
therefore, the contribution-maximizing ideal is no less than b�. If a� > b� + B, a
reduction in the ideal (" < 0) increases the measure of under-contributing members,
but decreases members�contributions. The proof of the proposition shows that the
net change is positive, so the contribution-maximizing ideal is no greater than b�+B.
3.2.2 Extensions

The following result provides the comparative statics with respect to V .

Remark 5 Under Assumption 1 with  = 0, the contribution-maximizing ideal, �a,
and the maximum feasible increase in expected contribution, g (�a), are weakly increas-
ing in V .

The contribution-maximizing ideal may depend on the shape, particularly the
skewness, of the distribution. The following corollary discusses the special cases of
symmetric (�the least skew�), increasing (�extremely right-skewed�) and decreasing
(�extremely left-skewed�) density functions, and the uniform density.

Corollary 2 Under Assumption 1 with  = 0,

� (i) if f is symmetric, when ���� > B, then �a as determined by (12), maximizes
g (a�); when ���� � B and f

�
�
�
is su¢ ciently close to f

�
�̂
�
, then �a = �+B

maximizes g (a�);

� (ii) if f 0 � 0 for all �i, then �a, determined by (12), maximizes g (a�);

� (iii) if f 0 � 0 for all �i, then �a = � +B maximizes g (a�); and

� (iv) if �i has a uniform distribution, when �� � � � B, then any ideal in�
� +B; ��

�
maximizes g (a�), and when �� � � < B, �a = � + B maximizes

g (a�).
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Corollary 2.i shows that under symmetric densities, the contribution-maximizing
ideal depends on the size of preference heterogeneity, as with the uniform distrib-
ution analyzed in Section 3.1. When preference heterogeneity is large, under the
contribution-maximizing ideal �a > � + B, agents with weak preferences remain out-
siders; however, when preference heterogeneity is small, the contribution-maximizing
ideal induces everyone to be insiders, under the additional condition that f

�
�
�
is suf-

�ciently close to f
�
�̂
�
. When this additional condition fails, the bene�t of inducing

the lowest-preference agents to join does not merit the cost of being unable to induce
higher contributions from other members.
Corollary 2.ii and iii state that the contribution-maximizing ideal takes the interior

solution of Proposition 3 under increasing density functions, and the corner solution
under decreasing density functions. For an increasing density function, b� = �; the
last part of Proposition 3 thus implies that the contribution-maximizing ideal �a � �,
i.e. the ideal is always higher than the highest type of the population, ��. When agents
are more densely located towards the higher end of the distribution, the contribution-
maximizing ideal should be su¢ ciently high to motivate these agents. For a decreasing
density function, the contribution-maximizing ideal makes the lowest-type agent in-
di¤erent, and all agents become insiders. In this case, agents are more densely located
in the lower end of the distribution so the contribution-maximizing ideal motivates
these agents to contribute.
A uniform distribution is symmetric, and both weakly increasing and weakly de-

creasing, so it satis�es all the properties in Corollary 2.i-iii. Corollary 2.iv extends
the analysis of Section 3.1 by showing the e¤ect of . When preference heterogeneity
is large enough, with  > 0, Proposition 1 states that the contribution-maximizing
ideal equals ��, so that no insider is induced to contribute less than their baseline
level. However, with  = 0, the risk of over-contribution vanishes, so any ideal in�
� +B; ��

�
does an equally good job in motivating contribution.

Proposition 4 considers the relation between the contribution-maximizing and the
welfare-maximizing ideal, extending Proposition 2.

Proposition 4 Under Assumption 1 with  = 0 and Inequality (9):

� (i) There exists an ideal in
h
max

n
� +B;min �̂

o
;max �̂ +B

i
that maximizes

welfare, M (a�), subject to the contribution constraints in Equation (3) and the
participation decisions stated in Lemma 2.

� (ii) If f 0 � 0 for all �i, then the contribution-maximizing ideal � + B is also
welfare-maximizing.

� (iii) If f 0 � 0 for all �i, the welfare-maximizing ideal is weakly higher than the
contribution-maximizing ideal �a identi�ed in Proposition 3.

� (iv) As N ! 1, then for any distribution, the contribution-maximizing ideal
and the welfare maximizing ideal converge.

The contribution-maximizing ideal maximizes other agents� contributions, but
also causes an agent�s contribution to be higher than his baseline. The increase
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in M (a�) arising from the �rst e¤ect is proportional to N , and the decrease in
M (a�) arising from the second e¤ect does not depend on N . When N is su¢ -
ciently large, the �rst e¤ect dominates, so the contribution-maximizing ideal also
maximizes welfare (Proposition 4.iv). Propositions 3 and 4.i imply that the welfare-
maximizing ideal lies in the same interval as the contribution-maximizing ideal:h
max

n
� +B;min �̂

o
;max �̂ +B

i
.

Agents� individual rationality constrains the ability of the ideal to raise contri-
butions. When the density is weakly decreasing, this constraint binds in the welfare
maximization problem: agents would have higher welfare if it were possible to increase
the contribution, but that increase is not feasible (Proposition 4.ii). In contrast, for in-
creasing densities, the welfare-maximizing ideal exceeds the contribution-maximizing
level (Proposition 4.iii). To understand this ranking, consider the welfare e¤ect of a
marginal increase in the ideal, beginning with the interior contribution-maximizing
level. This change creates only a second order e¤ect on the expected contribution
(and thus an agent�s expected external e¤ects from others�actions), but it has a �rst
order e¤ect on an agent�s welfare from own action. The higher ideal causes the lowest-
type insiders to leave the group, reducing their contribution cost substantially, and
increasing aggregate welfare. The higher ideal raises the remaining insiders�contribu-
tion costs, lowering aggregate welfare. However, increasing density functions assign
more weight to higher-type insiders; their welfare loss from own actions is small.9

Therefore the increase in welfare due to the exit of marginal insiders exceeds the
reduction in welfare due to higher costs for remaining insiders. Because an increase
in the ideal beginning with the contribution-maximizing level increases aggregate
welfare, the welfare-maximizing ideal exceeds the contribution-maximizing ideal.

4 Conclusion

Free-riding typically leads to under-provision of a public good. The global and per-
sistent nature of GHG pollution exacerbates the under-provision of climate services.
National sovereignty and di¤ering views about the severity of climate change make
it di¢ cult to reach an e¤ective international agreement on GHG regulation. Volun-
tary contribution to the public good of emission abatement might nevertheless be
important in curbing climate change. We adopt a behavioral perspective, showing
how identity-related bene�ts can in�uence voluntary public good contributions. The
agents in our setting might be individuals, in which case the identity-related bene�ts
are primarily psychological. Agents might also be companies or cities or states, in
which case the identity-related bene�ts may include both status and commercial or
political bene�ts. A member whose public good contribution di¤ers from the group
ideal has a loss in identity bene�t.
We examine the e¤ect of the ideal, without attempting to explain the mechanism

that determines it. Opinion-molders, including politicians, educators, and religious
leaders, might in�uence the ideal through public policies, media, school, and church.

9A type-�i insider�s welfare from own action, denoted by $, is $ = �iai � a2i
2 =

�i

�
�i +

�(a���i)
1+�

�
� 1

2

�
�i +

�(a���i)
1+�

�2
: We have d$

da� = �
�

�
1+�

�2
(a� � �i) :
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Nonenforceable international agreements such as the Kyoto Protocol or the 2015 Paris
climate agreement can also alter the group ideal. Manipulation of the group ideal can
help alleviate the free-riding problem associated with voluntary public good contri-
butions. A change in the ideal can alter both the depth and the width of the group
associated with it. A higher ideal encourages insiders to contribute more, but reduces
the range of the agents who become insiders. For uniformly distributed preferences,
homogeneity tends to make the contribution-maximizing group wide but shallow,
and heterogeneity tends to make that group narrow but deep. The same comparison
holds for symmetric general distributions if members do not obtain disutility from
over-contributing.
The contribution-maximizing ideal also maximizes welfare if the number of agents

is large. If members face no utility loss from contributions above the group ideal, then
the welfare-maximizing ideal equals the contribution-maximizing ideal if the density
of types is decreasing; the welfare-maximizing ideal is higher than the contribution-
maximizing ideal if the density of types is increasing.
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A Proofs

Proof. (Lemma 1) Because both alternative forms of Uj (ajja�) in the right side of
(2) are concave, by �rst order conditions, we have

argmax
aj

�jaj �
1

2
a2j �

�

2
(aj � a�)2 + V = �j +

� (a� � �j)
1 + �

; (13)

and

argmax
aj

�jaj �
1

2
a2j �



2
(aj � a�)2 + V = �j +

 (a� � �j)
1 + 

: (14)

If � = , then trivially the solution is given by either of these two expressions, which
are the same. Now suppose � 6= . Observe that

�j +
� (a� � �j)
1 + �

� a� () �j � a� (15)

for both � 2 f�; g. Suppose �j � a�. Then the right side of (13) is no higher than
a� and thus optimal given aj � a�. We then claim that dUj(aj ja�)

daj
� 0 for 8aj � a�:

Concavity of Uj (ajjaj � a�) implies that dUj(aj ja�)
daj

� 0 for all aj � �j +
(�j�a�)
1+

by

(14), and meanwhile aj � a� and �j � a� imply aj � a� � �j +
(�j�a�)
1+

by (15).

Therefore, dUj(aj ja
�)

daj
� 0 for all aj � a�. Consequently the right side of (13) is optimal

if �j � a�.
Suppose �j > a�, then the right side of (14) is no lower than a� and thus optimal

for aj 2 [a�;1) . A logic similar to the above shows that dUj(aj ja�)
daj

� 0 for 8aj � a�
and consequently the right side of (14) is optimal if �j > a�.

Proof. (Remark 2) Using Equations (1) and (3), we have the following. If a� �
�j > �i, meaning that both agents with �i and �j will be under-contributing insiders
by Footnote 3, then

ab (�j)� ab (�i) = �j � �i >
�j � �i
1 + �

= ai (�j)� ai (�i) :

If a� < �i < �j, meaning that both agents with �i and �j will be over-contributing
insiders by Footnote 3, then

ab (�j)� ab (�i) = �j � �i �
�j � �i
1 + 

= ai (�j)� ai (�i) :

If �j > a� � �i, meaning that the agent with �i will be an under-contributor while
the other an over-contributor as insiders, then

ab (�j)� ab (�i)
= �j � �i

>

�
�j +

 (a� � �j)
1 + 

�
�
�
�i +

� (a� � �i)
1 + �

�
= ai (�j)� ai (�i) ;
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because (a���j)
1+

� �(a���i)
1+�

< 0:

Proof. (Lemma 2) Comparing (5) and (6) while using the de�nitions of B and
D, we have the following.

1

2

�i (�i + 2�a
�)� �a�2

1 + �
+ V � �2i

2
(16)

, 2V (1 + �) � ��2i � 2�a��i + �a�2

, 2V (1 + �)

�
� (�i � a�)2

, a� �B � �i � a� +B:

Similarly,

1

2

�i (�i + 2a
�)� a�2

1 + 
+ V � 1

2
�2i

, a� �D � �i � a� +D:

If �i � a�, the agent will be an under-contributor as an insider, and if Inequality
(16) is satis�ed, the utility of being an (under-contributing) insider will be not lower
than that of being an outsider. Combining �i � a� and Inequality (16), an agent
will identify with the ideal and become an under-contributing insider if and only if
a� � B � �i � a�. Similar logic with �i � a� shows that an agent will identify with
the ideal and become an over-contributing insider if and only if a� < �i � a� + D.
Combining the above analysis and taking into account the constraint � � �i � �, the
lemma is proved.

The proofs of the propositions make use of the following technical lemma.

Lemma 4 For any function de�ned by

Y (x) =

Z z(x)

�

y (�i; x) d�i;

if y (�i; x) is bounded and continuous and z (x) is continuous, then Y is continuous.

Proof. (Proof of Lemma 4)We want to show limx!c Y (x) = Y (c) for any c. Since
y is bounded, there exists a �nite number W such that y (�i; x) � W for 8 (�i; x). By
de�nition,

Y (x)� Y (c) =
Z z(x)

�

y (�i; x) d�i �
Z z(c)

�

y (�i; c) d�i

=

Z z(x)

�

y (�i; x) d�i �
Z z(x)

�

y (�i; c) d�i +

Z z(x)

�

y (�i; c) d�i �
Z z(c)

�

y (�i; c) d�i

=

Z z(x)

�

[y (�i; x)� y (�i; c)] d�i +
Z z(x)

z(c)

y (�i; c) d�i:
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This implies

jY (x)� Y (c)j �
�����
Z z(x)

�

[y (�i; x)� y (�i; c)] d�i

�����+
�����
Z z(x)

z(c)

y (�i; c) d�i

�����
�
Z z(x)

�

jy (�i; x)� y (�i; c)j d�i +
�����
Z z(x)

z(c)

y (�i; c) d�i

�����
�
Z z(x)

�

jy (�i; x)� y (�i; c)j d�i +W jz (x)� z (c)j ;

where the �rst two inequalities follow from the triangle inequality, and the last inequal-
ity follows from y � W . Next, the continuity of z and y implies limx!c z (x) = z (c)
and limx!c y (�i; x) = y (�i; c). Consequently,

lim
x!c

Z z(x)

�

jy (�i; x)� y (�i; c)j d�i +W jz (x)� z (c)j = 0;

which implies that
0 � lim

x!c
jY (x)� Y (c)j � 0:

By the Squeeze Theorem, we have limx!c jY (x)� Y (c)j = 0, and therefore limx!c Y (x) =
Y (c).

Proof. (Proposition 1) Following Lemma 3, we consider only a� 2
�
�; �� +B

�
.

The following exhaustive list shows all the possible triplets for (I�; I�; I+) :�
All possible

�
I�; I�; I+

�	
=

� �
�; a�; a� +D

�
;
�
�; a�; �

�
;
�
�; �; �

�
(a� �B; a�; a� +D) ;

�
a� �B; a�; �

�
;
�
a� �B; �; �

� � :
Recall that a� > � =) I� = �, a�+D > � =) I+ = �, and a��B < � =) I� =

�. Meanwhile the possibilities with I� = �, I+ = � or I� = � are eliminated because
a� 2

�
�; �� +B

�
. Under uniform distribution, the density function is f (�i) = 1

���� .

Following (7), for any given triplet (I�; I�; I+) the increase in contribution is given
by

g (a�) =
1

�� � �

 


1 + 

Z I+

I�
(a� � �i) d�i +

�

1 + �

Z I�

I�
(a� � �i) d�i

!
(17)

=
1

�� � �

0BB@ 

1 + 

�
I+ � I�

��
a� � 1

2

�
I+ + I�

��
| {z }

Term 1

+
�

1 + �

�
I� � I�

��
a� � 1

2

�
I� + I�

��
| {z }

Term 2

1CCA :
Claim 0: g (a�) is continuous.
To see this, rewrite g (a�) as

g (a�) =
1

�� � �

24 
1+

�R I+
�
(a� � �i) d�i �

R I�
�
(a� � �i) d�i

�
+ �
1+�

�R I�
�
(a� � �i) d�i �

R I�
�
(a� � �i) d�i

� 35 ;
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where for each integral, the integrands are continuous and bounded (since we focus on
a� 2

�
�; �� +B

�
by Lemma 3), and the upper supports (I� or I+) are also continuous

in a�. By Lemma 4, g (a�) is continuous.
Claim 1: g

�
� +B

�
> g (a�) for all a� < � +B.

Observe that a� � � + B =) a� � B � � implying I� = �. Therefore the
triplet (I�; I�; I+) can be either

�
�; a�; a� +D

�
,
�
�; a�; ��

�
, or

�
�; ��; ��

�
. For each of

these possibilities, Term 1 and Term 2 in the last line of (17) are expressed by the
following.

Case (I�; I�; I+) Term 1 Term 2
1

�
�; a�; a� +D

�
�1
2
D2 1

2

�
a� � �

�2
2

�
�; a�; ��

�
�1
2

�
�� � a�

�2 1
2

�
a� � �

�2
3

�
�; ��; ��

�
0

�
�� � �

� �
a� � 1

2

�
�� + �

��
Substituting Term 1 and Term 2 in the above table back to (17), we observe that for all
the cases, g (a�) is increasing, given the boundaries of a� de�ned by the corresponding
(I�; I�; I+). When a� changes, the triplet (I�; I�; I+) may switch from one case to
another. However, given the continuity of g (a�) and that g (a�) is increasing for each
of the three possible triplet cases, we have g

�
� +B

�
> g (a�) for all a� < � +B.

Claim 2: g
�
��
�
� g (a�) for all a� < �� and strictly so if  > 0.

Observe that a� � �� =) I� = a�, since we consider only a� > �. Therefore
the triplet (I�; I�; I+) can be either

�
�; a�; a� +D

�
,
�
�; a�; �

�
, (a� �B; a�; a� +D),

or
�
a� �B; a�; ��

�
: For each of these possibilities, Term 1 and Term 2 in the last line

of (17) are expressed by the following.

Case (I�; I�; I+) Term 1 Term 2
1

�
�; a�; a� +D

�
�1
2
D2 1

2

�
a� � �

�2
2

�
�; a�; �

�
�1
2

�
�� � a�

�2 1
2

�
a� � �

�2
3 (a� �B; a�; a� +D) �1

2
D2 1

2
B2

4
�
a� �B; a�; ��

�
�1
2

�
�� � a�

�2 1
2
B2

Substituting Term 1 and Term 2 in the above table back to (17), we observe that
for all the cases, g (a�) is (weakly) increasing in a�. Similarly to the logic above, given
the continuity of g (a�), we have g

�
��
�
� g (a�) for all a� < ��.

Now suppose  > 0. If � � � > B +D, when a� changes, the triplet (I�; I�; I+)
may switch from Case 1 to Case 3 and then Case 4. If ��� � B+D, while the triplet
(I�; I�; I+) may switch, Case 3 never occurs. Note that g (a�) is strictly increasing in
a� for all the cases except Case 3, where g (a�) is constant in a�. Therefore, in both
of these two situations, g

�
��
�
> g (a�) for all a� < ��, given the continuity of g (a�).

Claim 3: For a� � max
�
��; � +B

	
, g (a�) is uniquely maximized atmax

�
��; � +B

	
.

Consider a� � max
�
��; � +B

	
. a� � �� implies I� = �� and I+ = ��, while

�� + B � a� � � + B implies I� = a� � B. Substitute I�, I�, and I+ and observe
that in the last line of (17) Term 1 is zero and Term 2 is:�

�� � (a� �B)
��
a� � 1

2

�
�� + (a� �B)

��
=
1

2

�
B2 �

�
a� � ��

�2�
;
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which is decreasing in a� because a� � �� and thus maximized uniquely at the lower
bound a� = max

�
��; � +B

	
.

Combining Claims 1-3 above, Part (i) is thus proved.
For Part (ii), when � � � < B, a = max

�
��; � +B

	
= � + B, under which

(I�; I�; I+) =
�
�; �; �

�
. Substituting these into (17), we have g

�
� +B

�
= �

1+�

�
B � ���

2

�
.

When ��� � B, a = max
�
��; � +B

	
= ��, under which (I�; I�; I+) =

�
� �B; �; �

�
.

Substituting these into (17), we have g
�
�
�
= �

1+�
B2

2(���)
= V

��� .

Proof. (Proof of Proposition 2) Suppose that n � B
�

�
1+�

�
. Since �i�s are i.i.d,

Equation (8) can be written as

M (a�) = E

�
�iai �

1

2
a2i

�
+ E (�i) (N � 1)E (ai) (18)

= E

�
�iai �

1

2
a2i

�
+ nE (ai) :

Given an insider�s contribution in Equation (3) and an outsider�s contribution �i,
after some simple algebra we obtain

E (ai)

=

Z ��

�

�idF (�i) +
�

1 + �

Z I�

I�
(a� � �i) dF (�i) +



1 + 

Z I+

I�
(a� � �i) dF (�i) ;

and

E

�
�iai �

1

2
a2i

�
=
1

2

Z ��

�

�2i dF (�i)�
1

2

Z I�

I�

�
� (a� � �i)
1 + �

�2
dF (�i)�

1

2

Z I+

I�

�
 (a� � �i)
1 + 

�2
dF (�i) :

Substituting both expressions into Equation (18) to obtain:

M (a�) =

Z ��

�

�
1

2
�2i + n�i

�
dF (�i) +

n�

1 + �

Z I�

I�
(a� � �i) dF (�i) +

n

1 + 

Z I+

I�
(a� � �i) dF (�i)

(19)

� 1
2

 Z I�

I�

�
� (a� � �i)
1 + �

�2
dF (�i) +

Z I+

I�

�
 (a� � �i)
1 + 

�2
dF (�i)

!
:

Following the same logic as Claim 0 in the proof of Proposition 1 and using Lemma
4, we obtain the continuity of M (a�).
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Using the density function f (�i) = 1
���� and rearranging the above equation yields,

�
�� � �

�
M (a�) =

Z ��

�

�
1

2
�2i + n�i

�
d�i (20)

+


1 + 

Z I+

I�

"
�1
2

 (a� � �i)2

1 + 
+ n (a� � �i)

#
d�i| {z }

Term 1

+
�

1 + �

Z I�

I�

"
�1
2

� (a� � �i)2

1 + �
+ n (a� � �i)

#
d�i| {z }

Term 2

:

Term 1 in (20), denoted by T1 (I�; I+), can be written as

T1
�
I�; I+

�
= �1

6

�


1 + 

���
I+ � a�

�3
+ (a� � I�)3

�
+n
�
I+ � I�

��
a� � 1

2

�
I+ + I�

��
;

(21)
while Term 2 in (20), denoted by T2 (I�; I�), can be written as

T2
�
I�; I�

�
= �1

6

�
�

1 + �

��
(I� � a�)3 +

�
a� � I�

�3�
+n
�
I� � I�

��
a� � 1

2

�
I� + I�

��
:

(22)
Similar to the proof of Proposition 1, we shall structure our proof according to triplets
(I�; I�; I+) and focus on a� 2

�
�; �� +B

�
because a� outside this domain is counter-

productive or ine¤ective. This rules out the possibilities with I� = �, I+ = � or
I� = �. So we have�

All possible
�
I�; I�; I+

�	
=

� �
�; a�; a� +D

�
;
�
�; a�; �

�
;
�
�; �; �

�
(a� �B; a�; a� +D) ;

�
a� �B; a�; �

�
;
�
a� �B; �; �

� � :
We �rst establish how T1 and T2 change with a� under each possibility. For

T1 (I
�; I+), the arguments have 3 possibilities: duplets (a�; a� +D) ;

�
a�; �

�
, and�

�; �
�
. By (21),

T1 (a
�; a� +D) = �1

6

�


1 + 

�
D3 � n

2
D2;

which is a constant. Next

T1
�
a�; �

�
= �1

6

�


1 + 

��
�� � a�

�3 � n
2

�
�� � a�

�2
;

where
dT1

�
a�; �

�
da�

=
�
�� � a�

��1
2

�


1 + 

��
�� � a�

�
+ n

�
� 0;

as duplet (I�; I+) =
�
a�; �

�
implies �� � a�. Lastly

T1
�
�; �

�
= 0; (23)
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which is a constant.
For T2 (I�; I�), the arguments have 4 possibilities: duplets

�
�; a�

�
; (a� �B; a�) ;

�
�; ��

�
and

�
a� �B; �

�
. By (22),

T2
�
�; a�

�
= �1

6

�
�

1 + �

��
a� � �

�3
+
n

2

�
a� � �

�2
where

dT2
�
�; a�

�
da�

=
�
a� � �

��
n� 1

2

�
�

1 + �

��
a� � �

��
� 0;

given n � B
�

�
1+�

�
. This is because duplet (I�; I�) =

�
�; a�

�
implies that a��B � �,

and thus n � B
2

�
�
1+�

�
� 1

2

�
�
1+�

� �
a� � �

�
. Then

T2 (a
� �B; a�) = �1

6

�
�

1 + �

�
B3 +

n

2
B2;

which is a constant. Next

T2
�
�; ��

�
= �1

6

�
�

1 + �

���
�� � a�

�3
+
�
a� � �

�3�
+ n

�
�� � �

��
a� � 1

2

�
�� + �

��
;

where

dT2
�
�; ��

�
da�

=
�
�� � �

� �
�1
2

�
�

1 + �

��
2a� �

�
�� + �

��
+ n

�
�
�
�� � �

� �
�1
2

�
�

1 + �

�
2B + n

�
� 0:

where the �rst inequality makes use of

I� = � ) a� �B � � ) �� + � > 2� � 2 (a� �B) ;

and the second inequality uses n � B
�

�
1+�

�
. Lastly,

T2
�
a� �B; �

�
= �1

6

�
�

1 + �

���
� � a�

�3
+B3

�
+
n

2

h
B2 �

�
� � a�

�2i
;

where

dT2
�
a� �B; �

�
da�

=
�
� � a�

��
n+

1

2

�
�

1 + �

��
� � a�

��
(24)

� 0:

To show this inequality, note that a� � � (because I� = �� here), and also n �
1
2

�
�
1+�

�
B > 1

2

�
�
1+�

� �
a� � �

�
by a� < � + B; thus in the right side of the �rst line

of (24), the �rst term is nonpositive while the second term is positive, which implies

that
dT2(a��B;�)

da� is nonpositive.
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Now we are ready to prove the proposition.
Claim 1: M

�
� +B

�
�M (a�) for all a� � � +B.

Observe that a� � � + B =) a� � B � � implying I� = �. Therefore the
triplet (I�; I�; I+) can be either

�
�; a�; a� +D

�
,
�
�; a�; ��

�
, or

�
�; ��; ��

�
. For all these

possibilities, as discussed above, Term 1 and Term 2 are either constant or increasing
in a�, which are summarized in the following table.

(I�; I�; I+) Term 1 Term 2�
�; a�; a� +D

�
dT1(a�;a�+D)

da� = 0
dT2(�;a�)

da� � 0�
�; a�; ��

� dT1(a�;��)
da� � 0 dT2(�;a�)

da� � 0�
�; ��; ��

� dT1(��;��)
da� = 0

dT2(�;��)
da� � 0

While the triplet (I�; I�; I+)may switch from one to another when a� changes,M (a�)
is continuous. Using Equation (20) and the results in this table, we haveM

�
� +B

�
�

M (a�) for 8a� � � +B.
Claim 2: M

�
��
�
�M (a�) for all a� � ��.

Observe that a� � �� =) I� = a� as we consider a� > � only. Therefore the
triplet (I�; I�; I+) can be either

�
�; a�; a� +D

�
,
�
�; a�; �

�
, (a� �B; a�; a� +D), or�

a� �B; a�; ��
�
: For all these possibilities, as discussed above, Term 1 and Term 2 are

either constant or increasing in a�, which are summarized in the following table.

(I�; I�; I+) Term 1 Term 2�
�; a�; a� +D

�
dT1(a�;a�+D)

da� = 0
dT2(�;a�)

da� � 0�
�; a�; �

� dT1(a�;��)
da� � 0 dT2(�;a�)

da� � 0
(a� �B; a�; a� +D) dT1(a�;a�+D)

da� = 0 dT2(a��B;a�)
da� = 0�

a� �B; a�; ��
� dT1(a�;��)

da� � 0 dT2(a��B;a�)
da� = 0

Using Equation (20) and the results in this table as well as the continuity of M (a�),
we have M

�
��
�
�M (a�) for 8a� � ��.

Claim 3: a� = max
�
��; � +B

	
maximizes M (a�).

Given Claim 1 and 2, we restrict our attention to a� � max
�
��; � +B

	
. a� � ��

implies I� = �� and I+ = ��, while �+B � a� < ��+B implies I� = a��B. Using the
results in (23) and (24) for Equation (20), we haveM

�
max

�
��; � +B

	�
�M (a�) for

all a� � max
�
��; � +B

	
, and therefore, Claim 3 and thus the proposition are proved.

Proof. (Proof of Proposition 3) Following Lemma 3, we consider only a� 2�
�; �� +B

�
. In this domain, the following exhaustive list shows all the possible pairs

of (I�; I�): �
All possible

�
I�; I�

�	
=
��
�; a�

�
;
�
�; �

�
; (a� �B; a�) ;

�
a� �B; �

�	
:
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Given (10), we are looking for a� that maximizes g (a�) where

1 + �

�
g (a�) =

Z I�

I�
(a� � �i) f (�i) d�i (25)

= (a� � �i)F (�i) jI
�

I� +

Z I�

I�
F (�i) d�i

= (a� � I�)F (I�)�
�
a� � I�

�
F
�
I�
�
+

Z I�

I�
F (�i) d�i

� T
�
I�; I�

�
:

Our problem is thus equivalent to maximize T (I�; I�). We have slightly abused the
notation here because T (I�; I�) is a function of a�, but this representation highlights
the dependence of the function form on the pair (I�; I�). We shall use T (I�; I�) and
T (a�) interchangeably.
Claim 1: dT

da� � 0 for all a
� � � +B.

To show this, observe that a� � � + B =) I� = �. Then the pair (I�; I�) will
be
�
�; a�

�
if a� � �, or

�
�; �

�
otherwise. For both possibilities, substitute (I�; I�)

into T and utilize F
�
�
�
= 0 and F

�
��
�
= 1 to obtain

T
�
�; a�

�
=

Z a�

�

F (�i) d�i; (26)

and

T
�
�; �

�
=
�
a� � ��

�
+

Z ��

�

F (�i) d�; (27)

where both expressions are increasing in a�. Moreover, T is continuous at the neigh-
borhood of a� = �. This implies that dT

da� � 0 for all a
� � � +B.

Claim 1 allows us to focus on a� 2
�
� +B; �� +B

�
, where the pair (I�; I�) is

either (a� �B; a�) or
�
a� �B; �

�
. Substitute them into T to obtain:

T (a� �B; a�) = �BF (a� �B) +
Z a�

a��B
F (�i) d�i;

T
�
a� �B; ��

�
= a� � �� �BF (a� �B) +

Z ��

a��B
F (�i) d�i

=

Z a�

��

F (�i) d�i �BF (a� �B) +
Z ��

a��B
F (�i) d�i

= �BF (a� �B) +
Z a�

a��B
F (�i) d�i;

where the second equality for T
�
a� �B; ��

�
makes use of F (�i) = 1 for �i � ��. Notice

that these two expressions are the same. Together with Claim 1, our optimization
problem now boils down to

max
a�2[�+B;��+B)

�BF (a� �B) +
Z a�

a��B
F (�i) d�i: (28)
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Its �rst and second order derivatives are:

dT

da�
= �Bf (a� �B) + F (a�)� F (a� �B) ; (29)

and
d2T

da�2
= �Bf 0 (a� �B) + [f (a�)� f (a� �B)] : (30)

For the subsequent analysis, whenever dT
da� and

d2T
da� are mentioned, we exclusively refer

to the two expressions above. The next claim allows us to restrict our attention to
a� 2

h
max

n
min �̂; � +B

o
;max �̂ +B

i
:

Claim 2: dT
da� � 0 for all a

� � min �̂; and dT
da� � 0 for all a

� � max �̂ +B.
If � + B � min �̂, then the �rst part of Claim 2 is proved given Claim 1. Now

suppose � + B < min �̂. We focus on a� 2
h
� +B;min �̂

i
. Recall that a� � min �̂

implies f 0 (�i) � 0 for �i � a�, which leads to F (a�)�F (a� �B) =
R a�
a��B f (�i) d�i �

Bf (a� �B). So by (29), dT
da� � 0. Combining this with Claim 1, we have dT

da� � 0 for
all a� � min �̂.
Next consider a� � max �̂ +B, which implies a� �B � max �̂ so that f 0 (�i) � 0

for all �i � a� � B. This means that F (a�) � F (a� �B) =
R a�
a��B f (�i) d�i �

Bf (a� �B), implying dT
da� � 0 by (29). The second part of Claim 2 is thus proved.

Next we prove a useful property of dT
da� .

Claim 3: dT
da� is a single-crossing function for a

� 2
h
max

n
min �̂; � +B

o
;max �̂ +B

i
.

For a� 2
h
max

n
min �̂; � +B

o
;max �̂ +B

i
, dT
da� is single-crossing, if

dT
da� ja�=a1 �

0 implies dT
da� ja�=a2 � 0 wherever a1 < a2. By (29), dT

da� ja�=a1 � 0 implies that
f (a1) � f(a1 � B) given Assumption 1. The fact that we are restricting to domain
a� 2

h
max

n
min �̂; � +B

o
;max �̂ +B

i
implies f (a�) is (weakly) decreasing while

f(a� � B) is (weakly) increasing, and therefore f (a�) � f(a� � B) will hold for all
a� > a1. Then this implies that for all a� > a1, the second term in the right side
of (30) is (weakly) negative, while the �rst term is also (weakly) negative because
a� � B � max �̂. So we have d2T

da�2 � 0 for a
� > a1. This implies dT

da� ja�=a2 � 0, given
a1 < a2 and dT

da� ja�=a1 � 0, which proves Claim 3.
We are now ready to prove the proposition. If Bf

�
�
�
� F

�
� +B

�
as stated in

(11), then dT
da� ja�=�+B � 0 by (29). By the single-crossing property the derivative will

remain negative for a� > � +B, so the corner solution a� = � +B is optimal.
If Bf

�
�
�
< F

�
� +B

�
, then dT

da� ja�=�+B > 0 by (29). Meanwhile,
dT
da� ja�=min �̂ � 0

by Claim 2. Therefore, we have dT
da� ja�=maxfmin �̂;�+Bg � 0. Also given

dT
da� ja�=max �̂+B �

0 from Claim 2, by continuity and the single-crossing property, there must exist some
cuto¤-point in

h
max

n
min �̂; � +B

o
;max �̂ +B

i
, before which dT

da� � 0 and
dT
da� � 0

otherwise. By the de�nition of quasi-concavity, this implies that T is quasi-concave inh
max

n
min �̂; � +B

o
;max �̂ +B

i
and thus the solution to the maximization prob-

lem is interior. Therefore, when Bf
�
�
�
� F

�
� +B

�
, the optimal a� is given by the

�rst order condition dT
da� = 0, where

dT
da� is given in (29).
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Proof. (Proof of Remark 5) Given B �
�
2V (1+�)

�

�1=2
, which is increasing in V ,

we want to show that the contribution maximizing a is increasing in B. According
to Proposition 3, under the general distribution of �i with  = 0, the contribution-
maximizing ideal is either � +B, which is increasing in B, or determined by (12).
When a is determined by (12), by the theorem of monotone comparative statics

(Milgrom and Shannon, 1994), to show that a increases in B, it su¢ ces to show that
g (a�) has increasing di¤erences in (a�;B), i.e. for all B0 � B, g (a�;B0) � g (a�;B)
is non-decreasing in a�, for a� 2

h
max

n
� +B;min �̂

o
;max �̂ +B

i
. By the analysis

between (25) and (28), we have

1 + �

�
[g (a�;B0)� g (a�;B)] = BF (a� �B)�B0F (a� �B0) +

Z a��B

a��B0
F (�i) d�i:

Di¤erentiating w.r.t a� yields

d1+�
�
[g (a�;B0)� g (a�;B)]

da�
= Bf (a� �B)�B0f (a� �B0) +

Z a��B

a��B0
f (�i) d�i

� � (B0 �B) f (a� �B0) +
Z a��B

a��B0
f (�i) d�i

� 0;

where the inequalities come from a� �B0 � a� �B � max �̂, given

a� 2
h
max

n
� +B;min �̂

o
;max �̂ +B

i
:

Therefore g (a�) has increasing di¤erences in (a�;B), so �a is increasing in B.
Next we will show that for both a = � + B or a as determined by (12), we have

dg(a)
dB

� 0. In the proof of Proposition 3 we showed that our maximization problem
can be simpli�ed to (28). If the contribution maximizing a = � +B, then

g
�
� +B

�
=

�

1 + �

"
�BF

�
�
�
+

Z �+B

�

F (�i) d�i

#
and therefore

dg
�
� +B

�
dB

=
�

1 + �

�
F
�
� +B

�
� F

�
�
��
� 0:

If the contribution maximizing a is determined by (12), then

g (a) =
�

1 + �

�
�BF (a�B) +

Z a

a�B
F (�i) d�i

�
:

By the envelope theorem,

dg (�a)

dB
=

�

1 + �
Bf (�a�B) � 0:

Since B is increasing in V , then under the contribution maximizing ideal, g (a) is
weakly increasing in V .
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Proof. (Proof of Corollary 2) (i) Given the symmetry and Assumption 1, f
�
�
�
=

min�i f (�i). When �� � � > B, we have Bf
�
�
�
<
�
�� � �

�
f
�
�
�
�
R �+B
� f (�i) d�i =

F
�
� +B

�
, therefore condition (11) fails and Proposition 3 shows that the ideal deter-

mined by (12) maximizes g (a�). When ���� � B, then it follows that F
�
� +B

�
= 1.

Moreover, the density at the peak satis�es f
�
�̂
�
� 1

���� �
1
B
. Therefore if f

�
�
�
is

su¢ ciently close to f
�
�̂
�
, we will have Bf

�
�
�
� 1 = F

�
� +B

�
, where condition

(11) is satis�ed and Proposition 1 shows that a� = � +B maximizes g (a�).
(ii) For upward-sloping density functions, f 0 � 0 for all �i implies that Inequality

(11) is not satis�ed. By Proposition 3, the contribution-maximizing a� is the ideal
determined by (12).
(iii) f 0 � 0 for all �i implies Bf

�
�
�
� F

�
� +B

�
. Proposition 3 implies that

a� = � +B is contribution maximizing.
(iv) Under the uniform distribution, when �� � � < B, Bf

�
�
�
= B

���� > 1 �
F
�
� +B

�
, by Proposition 3, a� = � + B maximizes g (a�). When �� � � � B,

Bf
�
�
�
= B

���� = F
�
� +B

�
, by Proposition 3, a� = � + B maximizes g (a�). Mean-

while, given  = 0 and for any a� 2
�
� +B; ��

�
, Equation (17) degenerates to

g (a�) =
1

�� � �
�

1 + �

�
I� � I�

��
a� � 1

2

�
I� + I�

��
=

1
�� � �

�

1 + �
[a� � (a� �B)]

�
a� � 1

2
(a� + a� �B)

�
;

which is a constant. Therefore, any a� 2
�
� +B; ��

�
maximizes g (a�).

Proof. (Proof of Proposition 4) (i) The Proof of Proposition 2 shows that Equa-
tion (8) can be written as Equation (19). Substituting  = 0 into Equation (19)
gives:

M (a�) =

Z ��

�

�
1

2
�2i + n�i

�
f (�i) d�i +

n�

1 + �

Z I�

I�
(a� � �i) f (�i) d�i

� 1
2

 Z I�

I�

�
� (a� � �i)
1 + �

�2
f (�i) d�i

!
:

De�ne

H
�
I�; I�

�
�
Z I�

I�

"
�1
2

� (a� � �i)2

1 + �
+ n (a� � �i)

#
dF (�i) :

Again we have slightly abused the notation here, since H (I�; I�) is a function
of a�. H is continuous in a� given the continuity of M (a�). The ideal a� that
maximizes H (I�; I�) will maximize M (a�). Any a� =2

�
�; �� +B

�
will not attract

any under-contributing insiders and will be ine¤ective with  = 0. We thus focus on
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a� 2
�
�; �� +B

�
. We have

dH (I�; I�)

da�
= �1

2

�
�

1 + �

�
d

da�

Z I�

I�
(a� � �i)2 dF (�i) + n

d

da�

Z I�

I�
(a� � �i) dF (�i)

(31)

= �1
2

�
�

1 + �

�
d

da�

Z I�

I�
(a� � �i)2 dF (�i) + n

dT (a�)

da�
;

where T (a�) is de�ned in (25). Referring to Equations (26), (27) and (29) in the proof
of Proposition 3, for each possible pair (I�; I�), dT (a

�)
da� is listed in the table below.

(I�; I�) dT (a�)
da��

�; a�
�

F (a�)�
�; ��

�
1

(a� �B; a�) �Bf (a� �B) + F (a�)� F (a� �B)�
a� �B; ��

�
�Bf (a� �B) + F (a�)� F (a� �B) with a� � ��

(32)

Meanwhile,Z I�

I�
(a� � �i)2 f (�i) d�i

= (a� � I�)2 F (I�)�
�
a� � I�

�2
F
�
I�
�
+

Z I�

I�
2 (a� � �i)F (�i) d�i

= (a� � I�)2 F (I�)�
�
a� � I�

�2
F
�
I�
�
+ [2 (a� � �i)G (�i)]I

�

I� +

Z I�

I�
2G (�i) d�i;

(33)

where we let G denote the inde�nite integral of F .
Claim 1: For any a� � � +B, (8) is maximized at a� = � +B.
To show this, observe that a� � � + B =) I� = �. Then the pair (I�; I�) can

either be
�
�; a�

�
or
�
�; �

�
. Consider �rst (I�; I�) =

�
�; a�

�
. Substituting (I�; I�)

into (33) we haveZ I�

I�
(a� � �i)2 f (�i) d�i = �

�
a� � �

�2
F
�
�
�
� 2

�
a� � �

�
G
�
�
�
+

Z a�

�

2G (�i) d�i:

Thus

d

da�

Z I�

I�
(a� � �i)2 f (�i) d�i = �2

�
a� � �

�
F
�
�
�
� 2G

�
�
�
+ 2G (a�) :

=

Z a�

�

2F (�i) d�i:
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Substituting this and dT (a�)
da� = F (a�) (from (32)) into (31) to obtain

dH
�
�; a�

�
da�

= �1
2

�

1 + �

Z a�

�

2F (�i) d�i + nF (a
�)

=
1

a� � �

 
�
�
�
a� � �

�
1 + �

Z a�

�

F (�i) d�i + nF (a
�)
�
a� � �

�!

� 1

a� � �

 
� �

1 + �

�
a� � �

� Z a�

�

F (�i) d�i + n

Z a�

�

F (�i) d�i

!
� 0;

where the �rst inequality is implied by increasing F (�i), and the second inequality
comes from n � �

1+�

�
a� � �

�
, which is due to n � �

1+�
B and a� � � +B.

Next, consider (I�; I�) =
�
�; ��

�
. From (33) we haveZ I�

I�
(a� � �i)2 f (�i) d�i =

�
a� � ��

�2
+2
�
a� � �

�
G
�
�
�
�2
�
a� � �

�
G
�
�
�
+

Z �

�

2G (�i) d�i:

Thus

d

da�

Z I�

I�
(a� � �i)2 f (�i) d�i = 2

�
a� � ��

�
+ 2

�
G
�
�
�
�G

�
�
��

= 2
�
a� � ��

�
+ 2

Z ��

�

F (�i) d�i:

Substituting this and dT (a�)
da� = 1 (from (32)) into (31) to obtain

dH
�
�; ��

�
da�

= � �

1 + �

 
a� � �� +

Z ��

�

F (�i) d�i

!
+ n

� � �

1 + �
B + n

� 0;

where the �rst inequality comes from

a� � �� +

Z ��

�

F (�i) d�i � B �
�
�� � �

�
+

Z ��

�

F (�i) d�i � B

(due to a� � � + B and F (�i) � 1 for any �i), and the second inequality makes

use of n � �
1+�
B. Therefore for both possible duplets (I�; I�),

dH(I�;I�)
da� � 0 for

any a� � � + B. Note that while duplet (I�; I�) may switch when a� changes, H is
continuous in a�. Consequently, we have H

�
� +B

�
� H (a�) for all a� < � +B and

Claim 1 is proved.
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Claim 1 allows us to focus on a� 2
�
� +B; �� +B

�
, where the pair (I�; I�) is

either (a� �B; a�) or
�
a� �B; �

�
. Substitute (I�; I�) = (a� �B; a�) into (33) to get:Z a�

a��B
(a� � �i)2 f (�i) d�i = �B2F (a� �B)� 2BG (a� �B) +

Z a�

a��B
2G (�i) d�i;

(34)
and substitute (I�; I�) =

�
a� �B; �

�
into (33) to get:Z I�

I�
(a� � �i)2 f (�i) d�i (35)

=
�
a� � ��

�2 �B2F (a� �B) + [2 (a� � �i)G (�i)]��a��B + Z ��

a��B
2G (�i) d�i

= �B2F (a� �B)� 2BG (a� �B) +
Z ��

a��B
2G (�i) d�i + 2

�
a� � ��

�
G
�
��
�
+
�
a� � ��

�2
:

Note that F (�i) = 1 for 8�i � �� implies G (�i) is linear in this range, implying

2
�
a� � ��

�
G
�
��
�
+
�
a� � ��

�2
=
�
a� � ��

�
�
�
G
�
��
�
+G

�
��
�
+
�
a� � ��

��
=

Z a�

��

2G (�i) d�i:

(36)
Substituting (36) to (35) yields (34). This means that (34) covers both (I�; I�) =�

�; a�
�
and

�
�; �

�
, and therefore it su¢ ces to focus our attention on (34). Its �rst-

order derivative is:

d

da�

Z a�

a��B
(a� � �i)2 f (�i) d�i (37)

= �B2f (a� �B)� 2BF (a� �B) + 2G (a�)� 2G (a� �B)
= B [�Bf (a� �B)� F (a� �B)]�BF (a� �B) + 2G (a�)� 2G (a� �B)

= B

�
�F (a�) + dT (a

�)

da�

�
�BF (a� �B) + 2G (a�)� 2G (a� �B)

= B
dT (a�)

da�
�BF (a�)�BF (a� �B) + 2G (a�)� 2G (a� �B) ;

where the third equality uses dT (a�)
da� = �Bf (a� �B) + F (a�)� F (a� �B) for both

(I�; I�) = (a� �B; a�) and
�
a� �B; �

�
, as shown in the table in (32). De�ne � to

be the last terms in the last line of (37):

� � �BF (a�)�BF (a� �B) + 2G (a�)� 2G (a� �B)

= 2

Z a�

a��B
F (�i) d�i �B (F (a�) + F (a� �B)) : (38)

�, which is a function of a�, may be positive or negative depending on the shape of
F in [a� �B; a�]. Speci�cally, � = 0 if F is linear (f constant), � � 0 if F is concave
(f decreasing), and � � 0 if F is convex (f increasing). Substituting (38) and (37)
to (31) yields

dH

da�
=

�
n� B

2

�

1 + �

�
dT (a�)

da�
� 1
2

�
�

1 + �

�
�: (39)
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Note that this expression covers both possibilities of (I�; I�) being either (a� �B; a�)
or
�
a� �B; �

�
as mentioned before, and dT (a�)

da� for both possibilities has the same
form. Given n � �

1+�
B, then the term in the parentheses in the �rst term of dH

da�

in (39) is positive. Since � (a�) can be both positive or negative depending on the
distribution, dT (a�)

da� = 0 does not necessarily imply dH
da� = 0. Nevertheless, we are

ready to prove Part (i) of the proposition.
To see this, �rst consider a� � max �̂ +B, implying f (�i) is decreasing for 8�i �

a� �B, which leads to � (a�) � 0 and also by (29)

F (a�)� F (a� �B) � Bf (a� �B) =) dT

da�
� 0:

Consequently we have dH
da� � 0 for all a� � max �̂ + B. Next consider a� � min �̂.

Suppose min �̂ < � + B. Then combining Claim 1 and the result above, there exists

a� 2
h
max

n
� +B;min �̂

o
;max �̂ +B

i
that maximizes H. Suppose min �̂ � �+B.

Consider a� 2
h
� +B;min �̂

i
. Recall that a� � min �̂ implies f (�i) is increasing for

8�i � a�, which leads to � (a�) � 0 and also by (29)

F (a�)� F (a� �B) � Bf (a� �B) =) dT

da�
� 0:

Consequently we have dH
da� � 0 for all a

� 2
h
� +B;min �̂

i
. This implies thatH is max-

imized atmin �̂ for all a� � min �̂, using Claim 1. Combining Claim 1 with the results
here, there exists a welfare-maximizing a� in interval

h
max

n
� +B;min �̂

o
;max �̂ +B

i
.

(ii) If f is decreasing, then � � 0. Meanwhile we have dT (a�)
da� = �Bf (a� �B) +

F (a�)�F (a� �B) � 0 for 8a� 2
�
� +B; �� +B

�
, which implies that dH

da� � 0 in this
interval. Consequently, H is maximized at the corner point � +B.
(iii) If f is increasing, then � � 0. Corollary 2 shows that the contribution

maximizing a� is determined by (12) where dT (a)
da� = 0. Thus for all a� < �a, dT (a

�)
da� > 0,

and thus dH(a)
da� > 0 given � � 0. Therefore, a� that maximizes H is (weakly) greater

than a.
(iv) Suppose that Bf

�
�
�
< F

�
� +B

�
and by Proposition 3 the contribution-

maximizing ideal a is determined by dT (a)
da� = 0. Part (i) of Proposition 4 allows us to

focus on a� 2
�
� +B; �� +B

�
for welfare-maximization. In this domain, both dT (a�)

da�

and � are continuous and so is dH
da� . We have

dH
�
� +B

�
da�

= �
�
n� B

2

�

1 + �

�
Bf
�
��
�
� 0;

dH
�
� +B

�
da�

=

�
n� B

2

�

1 + �

��
�Bf

�
�
�
+ F

�
� +B

��
� 1
2

�
�

1 + �

�"Z �+B

�

2F (�i) d�i �BF
�
� +B

�#
;
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where the �rst term of the right side is positive because Bf
�
�
�
< F

�
� +B

�
and n �

�
1+�
B. Thus

dH(�+B)
da� � 0 when N is large enough. Therefore, for each N that is large

enough, by the intermediate value theorem there exists ea (N) such that dH(ea(N))
da� = 0.

Next, the in�nite
�
n� B

2
�
1+�

�
and �nite �1

2

�
�
1+�

�
� imply that limN!1

dT (ea)
da� = 0, as

otherwise we will have dH(ea(N))
da� 6= 0. This means limN!1 ea (N) = a as de�ned above.

Finally, when N is large enough, H is quasi-concave because dT (a�)
da� is single-crossing

and so does dH
da� . ea (N) thus maximizes H.

Now suppose that Bf
�
�
�
� F

�
� +B

�
i.e the contribution-maximizing ideal

a = � + B, the corner solution. This implies that Inequality (11) holds, which

further implies that min b� � � + B, by our distribution assumption Assumption
1. Part (i) of this proposition thus implies that the welfare maximizing ideal lies

in
h
� +B;max �̂ +B

i
. The proof of Proposition 3 shows under the contribution-

maximizing ideal a = � + B, dT (a
�)

da� � 0 for a � � + B. When N !1, n!1, and
therefore we have dH

da� � 0 for a � � +B since �
1
2

�
�
1+�

�
� is �nite. This implies that

the welfare maximizing ideal is also � +B.
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